Skip to main content
Log in

Inhibition of ligand binding to g protein-coupled receptors by arachidonic acid

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Arachidonic acid (AA), released in response to muscarinic acetylcholine receptor (mAChR) stimulation, previously has been reported to function as a reversible feedback inhibitor of the mAChR. To determine if the effects of AA on binding to the mAChR are subtype specific and whether AA inhibits ligand binding to other G protein-coupled receptors (GPCRs), the effects of AA on ligand binding to the mAChR subtypes (M1, M2, M3, M4, and M5) and to the μ-opioid receptor, β2-adrenergic receptor (β2-AR), 5-hydroxytryptamine receptor (5-HTR), and nicotinic receptors were examined. AA was found to inhibit ligand binding to all mAChR subtypes, to the β2-AR, the 5-HTR, and to the μ-opioid receptor. However, AA does not inhibit ligand binding to the nicotinic receptor, even at high concentrations of AA. Thus, AA inhibits several types of GPCRs, with 50% inhibition occurring at 3–25 µM, whereas the nicotinic receptor, a non-GPCR, remains unaffected. Further research is needed to determine the mechanism by which AA inhibits GPCR function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berzaghi M. P., Cooper J., Castren E., Zafra F., Sofroniew M., et al. (1993) Cholinergic regulation of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) but not neurotrophin-3 (NT-3) mRNA levels in the developing rat hippocampus. J. Neurosci. 13, 3818–3826.

    CAS  Google Scholar 

  • Cakir Y., Plummer H. K. III, Tithof P. K., and Schuller H. M. (2002) Beta-adrenergic and arachidonic acid-mediated growth regulation of human breast cancer cell lines. Int. J. Oncol. 21, 153–157.

    PubMed  CAS  Google Scholar 

  • Chalimoniuk M., King-Pospisil K., Pedersen W. A., Malecki A., Wylegala E., Mattson M. P., et al. (2004) Arachidonic acid increases choline acetyltransferase activity in spinal cord neurons through a protein kinase C-mediated mechanism. J. Neurochem. 90, 629–636.

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos A. and Kenakin T. (2002) G protein-coupled receptor allosterism and complexing. Pharmacol. Rev. 54, 323–374.

    Article  PubMed  CAS  Google Scholar 

  • Conklin B. R., Brann M. R., Buckley N. J., Ma A. L., Bonner T. I., and Axelrod J. (1988) Stimulation of arachidonic acid release and inhibition of mitogenesis by cloned genes for muscarinic receptor subtypes stably expressed in A9 L cells. Proc. Natl. Acad. Sci. U. S. A. 85, 8698–8702.

    Article  PubMed  CAS  Google Scholar 

  • Cunha R. A., Constantino M. D., Fonseca E., and Ribeiro J. A. (2001) Age-dependent decrease in adenosine A1 receptor binding sites in the rat brain. Eur. J. Biochem. 268, 2939–2947.

    Article  PubMed  CAS  Google Scholar 

  • Cunha R. A., Ribeiro J. A., and Malva J. O. (2004) Presynaptic kainate receptors modulating glutamatergic transmission in the rat hippocampus are inhibited by arachidonic acid. Neurochem. Int. 44, 371–379.

    Article  PubMed  CAS  Google Scholar 

  • Davies P. and Maloney A. J. F. (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 2, 1403.

    Article  PubMed  CAS  Google Scholar 

  • Devane W. A. and Axelrod J. (1994) Enzymatic synthesis of anandamide, an endogenous ligand for the cannabinoid receptor, by brain membranes. Proc. Natl. Acad. Sci. U. S. A. 91, 6698–6701.

    Article  PubMed  CAS  Google Scholar 

  • Farias G. G., Godoy J. A., Hernandez F., Avila J., Fisher A., and Inestrosa N. C. (2004) M1 muscarinic receptor activation protects neurons from β-amyloid toxicity. A role for Wnt signaling pathway. Neurobiol. Dis. 17, 337–348.

    Article  PubMed  CAS  Google Scholar 

  • Fawcett J. R., Bordayo E. Z., Jackson K., Liu H., Peterson J., Svitak A., and Frey W. H. II (2002) Inactivation of the human brain muscarinic acetylcholine receptor by oxidative damage catalyzed by a low molecular weight endogenous inhibitor from Alzheimer’s brain is prevented by pyrophosphate analogs, bioflavonoids and other antioxidants. Brain Res. 950, 10–20.

    Article  PubMed  CAS  Google Scholar 

  • Felder C. C., Kanterman R. Y., Ma A. L., and Axelrod J. (1990) Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2-serotonin receptor that is independent of inositolphospholipid hydrolysis. Proc. Natl. Acad. Sci. U. S. A. 87, 2187–2191.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda K., Kato S., Morikawa H., Shoda T., and Mori K. (1996) Functional coupling of the δ-, μ-, and κ, opioid receptors to mitogen-activated protein kinase and arachidonate release in Chinese hamster ovary cells. J. Neurochem. 67, 1309–1316.

    Article  Google Scholar 

  • Glick J., Santoyo G., and Casey P. J. (1996) Arachidonate and related unsaturated fatty acids selectively inactivate the guanine nucleotide-binding regulatory protein, Gz. J. Biol. Chem. 271, 2949–2954.

    Google Scholar 

  • Jensen A. A. and Spalding T. A. (2004) Allosteric modulation of G-protein coupled receptors. Eur. J. Pharmacol. Sci. 21, 407–420.

    Article  CAS  Google Scholar 

  • Kim J., Isokawa M., Ledent C., and Alger B. E. (2002) Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. J. Neurosci. 22, 10182–10191.

    PubMed  CAS  Google Scholar 

  • Kimura T., Ohta T., Watanabe K., Yoshimura H., and Yamamoto I. (1998) Anandamide, an endogenous cannabinoid receptor ligand, also interacts with 5-hydroxytryptamine (5-HT) receptor. Biol. Pharm. Bull. 21, 224–226.

    PubMed  CAS  Google Scholar 

  • King M. E., Gamblin T. C., Kuret J., and Binder L. I. (2000) Differential assembly of human tau isoforms in the presence of arachidonic acid. J. Neurochem. 74, 1749–1757.

    Article  PubMed  CAS  Google Scholar 

  • Kirstein S. L. and Insel P. A. (2004) Autonomic nervous system pharmacogenomics: a progress report. Pharmcol. Rev. 56, 31–52.

    Article  CAS  Google Scholar 

  • Kjome J. R., Swenson K. A., Johnson M. N., Bordayo E. Z., Anderson L. E., Klevan A. I., et al. (1998) Inhibition of antagonist and agonist binding to the human brain muscarinic receptor by arachidonic acid. J. Mol. Neurosci. 10, 209–217.

    Article  PubMed  CAS  Google Scholar 

  • Lagalwar S., Bordayo E. Z., Hoffmann K. L., Fawcett J. R., and Frey W. H. II (1999) Anandamides inhibit binding to the muscarinic acetylcholine receptor. J. Mol. Neurosci. 13, 55–62.

    Article  PubMed  CAS  Google Scholar 

  • Leggett J. D., Aspley S., Beckett S. R. G., D’ Antona A. M., and Kendall D. A. (2004) Oleamide is a selective endogenous agonist of rat and human CB1 cannabinoid receptors. Br. J. Pharmacol. 141, 253–262.

    Article  PubMed  CAS  Google Scholar 

  • Levey A. I. (1996) Muscarinic acetylcholine receptor expression in memory circuits: implication of treatment of Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 93, 13541–13546.

    Article  Google Scholar 

  • Liu L., Roberts M. L. and Rittenhouse A. R. (2004) Phospholipid metabolism is required for M1 muscarinic inhibition of N-type calcium current in sympathetic neurons. Eur. Biophys. J. 33, 255–264.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzini A., Hrelia S., Bordoni A., Biagi P., Frisoni L., Marinucci T., Cristofalo V. J. (2001) Is increased arachidonic acid release a cause or a consequence of replicative senescence? Exp. Gerontol. 36, 65–78.

    Article  PubMed  CAS  Google Scholar 

  • Marks M. J. and Collins A. C. (1982) Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate. Mol. Pharmacol. 22, 554–564.

    PubMed  CAS  Google Scholar 

  • Menzaghi F., Behan D. P., and Chalmers D. T. (2002) Constitutively activated G- protein coupled receptors: a novel approach to CNS drug discovery. CNS Neurol. Dis. 1, 105–121.

    Article  CAS  Google Scholar 

  • Oktem H. A. and Apaydin S. (1998) Arachidonic acid modulation of 3H-naloxone specific binding to rat brain opioid receptors. Neurobiology 6, 323–332.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Puertas R., Pascual R. J., Vilaro T., and Pazos A. (1997) Autoradiographic distribution of M1, M2, M3, and M4 muscarinic receptor subtypes in Alzheimer’s disease. Synapse 26, 341–350.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum K., Futter M., Jones M., Hulme E. C., and Bliss T. V. P. (2000) ERKI/II regulation by the muscarinic acetylcholine receptors in neurons. J. Neurosci. 20, 977–985.

    PubMed  CAS  Google Scholar 

  • Saitoh H., Namatame Y., Hirano A., and Sugawara M. (2004) An excised patch membrane sensor for arachidonic acid released in mouse hippocampal slices under stimulation of L-glutamate. Anal. Biochem. 329, 163–172.

    Article  PubMed  CAS  Google Scholar 

  • Sato T., Hashizume T., Nakao K., Akiba S., and Fujii T. (1989) Platelet desensitization by arachidonic acid is associated with the suppression of end operoxide/thromboxane A2 binding to the membrane receptor. Biochim. Biophys. Acta 992, 168–173.

    PubMed  CAS  Google Scholar 

  • Scarpero H. M. and Dmochowski R. R. (2003) Muscarinic receptors: what we know. Curr. Urol. Rep. 4, 421–428.

    Article  PubMed  Google Scholar 

  • Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzane M. D., et al. (1985) Measurement of protein using bicinchonic acid. Ann. Biochem. 150, 76–85.

    Article  CAS  Google Scholar 

  • Thomas E. A., Carson M. J., Neal M. J., and Sutcliffe G. (1997) Unique allosteric regulation of 5-hydroxytryptamine receptor-mediated signal transduction by oleamide. Proc. Natl. Acad. Sci. U. S. A. 94, 14115–14119.

    Article  PubMed  CAS  Google Scholar 

  • van Koppen C. J. and Bjorn K. (2003) Regulation of muscarinic acetylcholine receptor signaling. Pharmacol. Ther. 98, 197–220.

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse P.J., Price D. L., Struble R. G., Clark A. W., Coyle J. T., and DeLong M. R. (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239.

    Article  PubMed  CAS  Google Scholar 

  • Xu H., Lichtstein D., Kassis S., Lutz R. A., Rodbard D., and Chernick S. S. (1988) Multiple interactions of unsaturated fatty acids with opiate and ouabain binding sites and β-adrenergic sensitive adenylate cyclase system. J. Recept. Res. 8, 205–223.

    PubMed  CAS  Google Scholar 

  • Yasuda H., Kishiro K., Izumi N., and Nakanishi M. (1985) Biphasic liberation of arachidonic and stearic acids during cerebral ischemia. 45, 168–172.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Frey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordayo, E.Z., Fawcett, J.R., Lagalwar, S. et al. Inhibition of ligand binding to g protein-coupled receptors by arachidonic acid. J Mol Neurosci 27, 185–194 (2005). https://doi.org/10.1385/JMN:27:2:185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:27:2:185

Index Entries

Navigation