Skip to main content
Log in

The ubiquitin-proteasome pathway is necessary for maintenance of the postmitotic status of neurons

  • Original Article
  • Brief Communication
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The ubiquitin-proteasome pathway (UPP) has been implicated in the regulation of a number of key cellular processes in mammalian cells, including the cell cycle and apoptosis. Furthermore, defects in the UPP have been implicated in neurodegenerative disorders such as Parkinson’s disease (PD), as mutations in the ubiquitin ligase Parkin underlie a familial form of parkinsonism and ubiquitinated inclusions are a defining hallmark of PD pathology. To functionally dissect molecular components of the UPP in postmitotic neurons, we used RNA interference to knock down genes that encode genetically characterized components of the UPP. Here, we show that knockdown of two such components, the ubiquitin ligase scaffolding protein Cullin-1 (Cul-1) and the proteasome-associated deubiquitinating protein Pad-1, lead to cell cycle reactivation and apoptosis in subsets of postmitotic neurons. Furthermore, knockdown of Cul-1 appears to specifically affect the dopaminergic population. These data support the hypothesis that the UPP normally functions to regulate cell-cycle reentry in postmitotic neurons and further implicate this pathway in dopamine neuron degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Fang S. and Weissman A. M. (2004) A field guide to ubiquitylation. Cell. Mol. Life Sci. 61, 1546–1561.

    Article  PubMed  CAS  Google Scholar 

  • Giardina S. F. and Beart P. M. (2002) Kainate receptor-mediated apoptosis in primary cultures of cerebellar granule cells is attenuated by mitogen-activated protein and cyclin-dependent kinase inhibitors. Br. J. Pharmacol. 135, 1733–1742.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M. S., Fleming S. M., Palacino J. J., et al. (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 278, 43628–43635.

    Article  PubMed  CAS  Google Scholar 

  • Hershko A. and Ciechanover A. (1998) The ubiquitin system. Annu. Rev. Biochem. 67, 425–479.

    Article  PubMed  CAS  Google Scholar 

  • Husseman J. W., Nochlin D., and Vincent I. (2000) Mitotic activation: a convergent mechanism for a cohort of neurodegenerative diseases. Neurobiol. Aging 21, 815–828.

    Article  PubMed  CAS  Google Scholar 

  • Itier J. M., Ibanez P., Mena M. A., et al. (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum. Mol. Genet. 12, 2277–2291.

    Article  PubMed  CAS  Google Scholar 

  • Klein J. A., Longo-Guess C. M., Rossmann M. P., et al. (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419, 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Koepp D. M., Schaefer L. K., Ye X., et al. (2001) Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294, 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Kruman I. I., Wersto R. P., Cardozo-Pelaez F., et al. (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41, 549–561.

    Article  PubMed  CAS  Google Scholar 

  • Liao E. H., Hung W., Abrams B., et al. (2004) An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature 430, 345–350.

    Article  PubMed  CAS  Google Scholar 

  • Michel J. J. and Xiong Y. (1998) Human CUL-1, but not other cullin family members, selectively interacts with SKP1 to form a complex with SKP2 and cyclin A. Cell Growth Differ. 9, 435–449.

    PubMed  CAS  Google Scholar 

  • Moberg K. H., Bell D. W., Wahrer D. C., et al. (2001) Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413, 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Nagy Z. (2000) Cell cycle regulatory failure in neurones: causes and consequences. Neurobiol. Aging 21, 761–769.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K. I., Hatakeyama S., Nakayama K., et al. (2001) Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1. Biochem. Biophys. Res. Commun. 282, 853–860.

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya Y., Adams R., Morris-Kay G. M., et al. (1997) Apoptotic cell death in neuronal differentiation of P19 EC cells: cell death follows reentry into S phase. J. Cell. Physiol. 172, 25–35.

    Article  PubMed  CAS  Google Scholar 

  • Nouspikel T. and Hanawalt P. C. (2003) When parsimony backfires: neglecting DNA repair may doom neurons in Alzheimer’s disease. Bioessays 25, 168–173.

    Article  PubMed  CAS  Google Scholar 

  • Park D. S., Levine B., Ferrari G., et al. (1997) Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J. Neurosci. 17, 8975–8983.

    PubMed  CAS  Google Scholar 

  • Park D. S., Morris E. J., Stefanis L., et al. (1998) Multiple pathways of neuronal death induced by DNA-damaging agents, NGF deprivation, and oxidative stress. J. Neurosci. 18, 830–840.

    PubMed  CAS  Google Scholar 

  • Peters J. M. (1998) SCF and APC: the Yin and Yang of cell cycle regulated proteolysis. Curr. Opin. Cell Biol. 10, 759–768.

    Article  PubMed  CAS  Google Scholar 

  • Qi Y., Wang J. K., McMillian M., et al. (1997) Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation. J. Neurosci. 17, 1217–1225.

    PubMed  CAS  Google Scholar 

  • Rideout H. J., Wang Q., Park D. S., et al. (2003) Cyclin-dependent kinase activity is required for apoptotic death but not inclusion formation in cortical neurons after proteasomal inhibition. J. Neurosci. 23, 1237–1245.

    PubMed  CAS  Google Scholar 

  • Rolig R. L. and McKinnon P. J. (2000) Linking DNA damage and neurodegeneration. Trends Neurosci. 23, 417–424.

    Article  PubMed  CAS  Google Scholar 

  • Rubinson D. A., Dillon C. P., Kwiatkowski A. V., et al. (2003) Alentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406.

    Article  PubMed  CAS  Google Scholar 

  • Spruck C. H. and Strohmaier H. M. (2002) Seek and destroy: SCF ubiquitin ligases in mammalian cell cycle control. Cell Cycle 1, 250–254.

    PubMed  CAS  Google Scholar 

  • Staropoli J. F., McDermott C., Martinat C., et al. (2003) Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37, 735–749.

    Article  PubMed  CAS  Google Scholar 

  • Strohmaier H., Spruck C. H., Kaiser P., et al. (2001) Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413, 316–322.

    Article  PubMed  CAS  Google Scholar 

  • Verdaguer E., Garcia-Jorda E., Canudas A. M., et al. (2002) Kainic acid-induced apoptosis in cerebellar granule neurons: an attempt at cell cycle re-entry. Neuroreport 13, 413–416.

    Article  PubMed  CAS  Google Scholar 

  • Von Coelln R., Thomas B., Savitt J. M., et al. (2004) Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc. Natl. Acad. Sci. U. S. A. 101, 10744–10749.

    Article  Google Scholar 

  • Wang Y., Penfold S., Tang X., et al. (1999) Deletion of the Cull gene in mice causes arrest in early embryogenesis and accumulation of cyclin E. Curr. Biol. 9, 1191–1194.

    Article  PubMed  CAS  Google Scholar 

  • Yao T. and Cohen R. E. (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407.

    Article  PubMed  CAS  Google Scholar 

  • Zachariae W. and Nasmyth K. (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 13, 2039–2058.

    Article  PubMed  CAS  Google Scholar 

  • Zhou F., Kelley M.R., Chiang Y. H., et al. (2000) Three to four-year-old nonpassaged EGF-responsive neural progenitor cells: proliferation, apoptosis, and DNA repair. Exp. Neurol. 164, 200–208.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asa Abeliovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staropoli, J.F., Abeliovich, A. The ubiquitin-proteasome pathway is necessary for maintenance of the postmitotic status of neurons. J Mol Neurosci 27, 175–183 (2005). https://doi.org/10.1385/JMN:27:2:175

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:27:2:175

Index Entries

Navigation