Skip to main content
Log in

Gene therapy for type 1 diabetes

Is it ready for the clinic?

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

This review, in addition to updating the growing list of type 1 diabetes-relevant gene therapies, offers an outline of short-term objectives that can readily be met to move, at least, adenoviral and adeno-associated viral-based protocols into the clinic, first as a means of facilitating islet allografts as well as platforms with which to introduce immunoregulatory transgenes. A wide array of genes have been tested to restore insulin production, to drive the differentiation of insulin-producing progenitors, and to confer immunosuppression in an antigen-and tissue-restricted manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyle JP, Honeycutt AA, Narayan KM, et al: Projection of diabetes burden through 2050: impact of changing demography and disease prevalence in the U.S.. Diabetes Care 2001;24:1936–1940.

    Article  PubMed  CAS  Google Scholar 

  2. LeRoith D, Smith DO: Monitoring glycemic control: the cornerstone of diabetes care. Clin Ther 2005;27:1489–1499.

    Article  PubMed  Google Scholar 

  3. Faideau B, Larger E, Lepault F, Carel, JC, Boitard C: Role of {beta}-cells in type 1 diabetes Pathogenesis. Diabetes 2005;54(Suppl 2):S87-S96.

    Article  PubMed  CAS  Google Scholar 

  4. Bottino R, Trucco M: Multifaceted therapeutic approaches for a multigenic disease. Diabetes 2005; 54:S79-S86.

    Article  PubMed  CAS  Google Scholar 

  5. Giannoukakis N, Robbins PD: Gene and cell therapies for diabetes mellitus: strategies and clinical potential. Bio Drugs 2002;16:149–173.

    CAS  Google Scholar 

  6. Bottino R, Lemarchand P, Trucco M, Giannoukakis N: Gene- and cell-based therapeutics for type I diabetes mellitus. Gene Ther 2003;10:875–889.

    Article  PubMed  CAS  Google Scholar 

  7. Giannoukakis N, Trucco M: Gene therapy technology applied to disorders of glucose metabolism: promise, achievements, and prospects. Biotechniques 2003;35:122–145.

    PubMed  CAS  Google Scholar 

  8. Giannoukakis N, Trucco M: Current status and prospects for gene and cell therapeutics for type 1 diabetes mellitus. Rev Endocr Metab Disord 2003;4:369–380.

    Article  PubMed  CAS  Google Scholar 

  9. Kovesdi I, Brough DE, Bruder JT, Wickham TJ: Adenoviral vectors for gene transfer. Curr Opin Biotechnol 1997;8:583–589.

    Article  PubMed  CAS  Google Scholar 

  10. Yeh P, Perricaudet M: Advances in adenoviral vectors: from genetic engineering to their biology. FASEB J 1997;11:615–623.

    PubMed  CAS  Google Scholar 

  11. Kochanek S: Development of high-capacity adenoviral vectors for gene therapy. Thromb Haemost 1999; 82:547–551.

    PubMed  CAS  Google Scholar 

  12. Kochanek S: High-capacity adenoviral vectors for gene transfer and somatic gene therapy. Hum Gene Ther 1999;10:2451–2459.

    Article  PubMed  CAS  Google Scholar 

  13. Seth P: Adenoviral vectors. Adv Exp Med Biol 2000;465: 13–22.

    Article  PubMed  CAS  Google Scholar 

  14. St George JA: Gene therapy progress and prospects: adenoviral vectors. Gene Ther 2003;10:1135–1141.

    Article  PubMed  CAS  Google Scholar 

  15. Cao H, Koehler DR, Hu J: Adenoviral vectors for gene replacement therapy. Viral Immunol 2004;17:327–333.

    Article  PubMed  CAS  Google Scholar 

  16. Schagen FH, Ossevoort M, Toes RE, Hoeben RC: Immune responses against adenoviral vectors and their transgene products: a review of strategies for evasion. Crit Rev Oncol Hematol 2004;50:51–70.

    Article  PubMed  Google Scholar 

  17. Volpers C, Kochanek S: Adenoviral vectors for gene transfer and therapy. J Gene Med 2004;6 Suppl 1: S164-S171.

    Article  PubMed  CAS  Google Scholar 

  18. Lai CM, Lai YK, Rakoczy PE: Adenovirus and adeno-associated virus vectors. DNA Cell Biol 2002;21:895–913.

    Article  PubMed  CAS  Google Scholar 

  19. Grimm D, Kay MA: From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 2003;3:281–304.

    Article  PubMed  CAS  Google Scholar 

  20. Stilwell JL, Samulski RJ: Adeno-associated virus vectors for therapeutic gene transfer. Biotechniques 2003;34:148–150, 152, 154 passim.

    PubMed  CAS  Google Scholar 

  21. Sun JY, Anand-Jawa V, Chatterjee S, Wong KK: Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther 2003;10:964–976.

    Article  PubMed  CAS  Google Scholar 

  22. Buning H, Braun-Falco M, Hallek M: Progress in the use of adeno-associated viral vectors for gene therapy. Cells Tissues Organs 2004;177:139–150.

    Article  PubMed  CAS  Google Scholar 

  23. Carter BJ: Adeno-associated virus and the development of adeno-associated virus vectors: a historical perspective. Mol Ther 2004;10:981–989.

    Article  PubMed  CAS  Google Scholar 

  24. Conlon TJ, Flotte TR: Recombinant adeno-associated virus vectors for gene therapy. Expert Opin Biol Ther 2004;4:1093–1101.

    Article  PubMed  CAS  Google Scholar 

  25. Daly TM: Overview of adeno-associated viral vectors. Methods Mol Biol 2004;246:157–165.

    PubMed  CAS  Google Scholar 

  26. Flotte TR: Gene therapy progress and prospects: recombinant adeno-associated virus (rAAV) vectors. Gene Ther 2004;11:805–810.

    Article  PubMed  CAS  Google Scholar 

  27. McCarty DM, Young SM, Jr, Samulski RJ: Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 2004;38:819–845.

    Article  PubMed  CAS  Google Scholar 

  28. Wang CH, Liu DW, Tsao YP, Xiao X, Chen SL: Can genes transduced by adeno-associated virus vectors elicit or evade an immune response? Arch Virol 2004;149:1–15.

    Article  PubMed  CAS  Google Scholar 

  29. Romano G: Current development of adeno-associated viral vectors. Drug News Perspect 2005;18:311–316.

    Article  PubMed  CAS  Google Scholar 

  30. Snyder RO, Francis J: Adeno-associated viral vectors for clinical gene transfer studies. Curr Gene Ther 2005; 5:311–321.

    Article  PubMed  CAS  Google Scholar 

  31. Zaiss AK, Muruve DA: Immune responses to adeno-associated virus vectors. Curr Gene Ther 2005;5:323–331.

    Article  PubMed  CAS  Google Scholar 

  32. Raper SE, DeMatteo RP: Adenovirus-mediated in vivo gene transfer and expression in normal rat pancreas. Pancreas 1996;12:401–410.

    Article  PubMed  CAS  Google Scholar 

  33. Flotte T, Agarwal A, Wang J, et al: Efficient ex vivo transduction of pancreatic islet cells with recombinant adeno-associated virus vectors. Diabetes 2001;50:515–520.

    Article  PubMed  CAS  Google Scholar 

  34. Loiler SA, Tang Q, Clarke T, et al: Localized gene expression following administration of adeno-associated viral vectors via pancreatic ducts. Mol Ther 2005; 12:519–527.

    Article  PubMed  CAS  Google Scholar 

  35. Wang Z, Zhu T, Rehman KK, et al: Widespread and stable pancreatic gene transfer by AAV vectors via different routes. Diabetes 2006;55:875–884.

    Article  PubMed  CAS  Google Scholar 

  36. Ayuso E, Chillon M, Garcia F, et al: In vivo gene transfer to healthy and diabetic canine pancreas. Mol Ther 2005;13:747–755.

    Article  PubMed  CAS  Google Scholar 

  37. McClane SJ, Chirmule N, Burke CV, Raper SE: Characterization of the immune response after local delivery of recombinant adenovirus in murine pancreas and successful strategies for readministration. Hum Gene Ther 1997;8:2207–2216.

    PubMed  CAS  Google Scholar 

  38. Shifrin AL, Auricchio A, Yu QC, Wilson J, Raper SE: Adenoviral vector-mediated insulin gene transfer in the mouse pancreas corrects streptozo tocin-induced hyperglycemia. Gene Ther 2001;8:1480–1489.

    Article  PubMed  CAS  Google Scholar 

  39. Couzin J, Kaiser J: Gene therapy. As Gelsinger case ends, gene therapy suffers another blow. Science 2005;307:1028.

    Article  PubMed  CAS  Google Scholar 

  40. Somia N, Verma IM: Gene therapy: trials and tribulations. Nat Rev Genet 2000;1:91–99.

    Article  PubMed  CAS  Google Scholar 

  41. Hirano Y, Mitamura T, Tamura T, Ohara K, Mine Y, Noguchi H: Mechanism of FK506-induced glucose intolerance in rats. J Toxicol Sci 1994;19:61–65.

    PubMed  CAS  Google Scholar 

  42. Uchizono Y, Iwase M, Nakamura U, Sasaki N, Goto D, Iida M: Tacrolimus impairment of insulin secretion in isolated rat islets occurs at multiple distal sites in stimulus-secretion coupling. Endocrinology 2004;145:2264–2272.

    Article  PubMed  CAS  Google Scholar 

  43. Shapiro AM, Geng Hao E, Lakey JR, Finegood DT, Rajotte RV, Kneteman NM: Defining optimal immunosuppression for islet transplantation based on reduced diabetogenicity in canine islet autografts. Transplantation 2002;74:1522–1528.

    Article  PubMed  CAS  Google Scholar 

  44. Bonner-Weir S, Sharma A: Pancreatic stem cells. J Pathol 2002;197:519–526.

    Article  PubMed  Google Scholar 

  45. Seaberg RM, Smukler SR, Kieffer TJ, et al: Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 2004;22:1115–1124.

    Article  PubMed  CAS  Google Scholar 

  46. Suzuki A, Nakauchi H, Taniguchi H: Prospective isolation of multipotent pancreatic progenitors using flowcytometric cell sorting. Diabetes 2004;53:2143–2152.

    Article  PubMed  CAS  Google Scholar 

  47. Trucco M: Regeneration of the pancreatic beta cell. J Clin Invest 2005;115:5–12.

    Article  PubMed  CAS  Google Scholar 

  48. Bonner-Weir S, Toschi E, Inada A, et al: The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes 2004;5(Suppl 2):16–22.

    Article  PubMed  Google Scholar 

  49. Zorina TD, Subbotin VM, Bertera S, et al: Recovery of en dogenous beta cell function in autoimmune diabetes. Stem Cells 2003;21:377–388.

    Article  PubMed  Google Scholar 

  50. Zorina TD, Subbotin VM, Bertera S, et al: Distinct characteristics and features of all ogeneic chimerism in the NOD mouse model of autoimmune diabetes. Cell Transplant 2002;11:113–123.

    PubMed  Google Scholar 

  51. Solimena M, Dirkx R, Jr, Hermel JM, et al: ICA 512, an autoanti gen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. EMBO J 1996; 15:2102–2114.

    PubMed  CAS  Google Scholar 

  52. Ikehara S, Ohtsuki H, Good RA, et al: Prevention of type I diabetes in nonobese diabetic mice by allogenic bone marrow transplantation. Proc Natl Acad Sci USA 1985;82:7743–7747.

    Article  PubMed  CAS  Google Scholar 

  53. von Herrath M, Homann D: Islet regeneration needed for overcoming autoimmune destruction—considerations on the pathogenesis of type 1 diabetes. Pediatr Diabetes 2004;5(Suppl 2):23–28.

    Article  Google Scholar 

  54. Rood PP, Bottino R, Balamurugan AN, Fan Y, Cooper DK, Trucco M: Facilitating physiologic self-regeneration: a step beyond islet cell replacement. Pharm Res 2006;23:227–242.

    Article  PubMed  CAS  Google Scholar 

  55. Suarez-Pinzon WL, Yan Y, Power R, Brand SJ, Rabinovitch A: Combination therapy with epidermal growth factor and gastrin increases {beta}-cell mass and reverses hyperglycemia in diabetic NOD mice. Diabetes 2005;54:2596–2601.

    Article  PubMed  CAS  Google Scholar 

  56. Baeyens L, De Breuck S, Lardon J, Mfopou JK, Rooman I, Bouwens L: In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 2005;48:49–57.

    Article  PubMed  CAS  Google Scholar 

  57. Heremans Y, Van De Casteele M, in't Veld, P, et al: Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol 2002;159:303–312.

    Article  PubMed  CAS  Google Scholar 

  58. Garcia-Ocana A, Takane KK, Syed MA, Philbrick WM, Vasavada RC, Stewart AF: Hepatocyte growth factor overexpression in the islet of transgenic mice increases beta cell proliferation, enhances islet mass, and induces mild hypoglycemia. J Biol Chem 2000; 275:1226–1232.

    Article  PubMed  CAS  Google Scholar 

  59. George M, Ayuso E, Casellas A, Costa C, Devedjian JC, Bosch F: Beta cell expression of IGF-I leads to recovery from type 1 diabetes. J Clin Invest 2002;109:1153–1163.

    Article  PubMed  CAS  Google Scholar 

  60. Guo Y, Lu Y, Houle D, et al: Pancreatic islet-specific expression of an insulin-like growth factor-I transgene compensates islet cell growth in growth hormone receptor gene-deficient mice. Endocrinology 2005;146: 2602–2609.

    Article  PubMed  CAS  Google Scholar 

  61. Farilla L, Hui H, Bertolotto C, et al: Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 2002;143:4397–4408.

    Article  PubMed  CAS  Google Scholar 

  62. Rehman KK, Wang Z, Bottino R, et al: Efficient gene delivery to human and rodent islets with doublestranded (ds) AAV-based vectors. Gene Ther 2005;12:1313–1323.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Anneo, A., Rood, P., Bottino, R. et al. Gene therapy for type 1 diabetes. Immunol Res 36, 83–89 (2006). https://doi.org/10.1385/IR:36:1:83

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:36:1:83

Key Words

Navigation