Skip to main content
Log in

CD161B: ClrB interactions mediate activation of enhanced lysis of tumor target cells following NK cell:DC co-culture

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Co-culture of natural killer (NK) cells and dendritic cells (DCs) results in their reciprocal co-activation, and an enhancement of lysis of tumor target cells. The receptor:ligand pairings mediating this enhancement are unknown. Therefore, we investigated whether interactions of CD161, on NK cells, with Clrs, on DCs, might have a role in this effect. Blocking expression of CD 161B using siRNA resulted in a reduction in enhanced lytic activity following NK:DC co-culture. Conversely, blocking expression of CD161F with siRNA had no effect on enhanced lytic function following NK:DC co-culture. Blocking expression of ClrB/Ocil, a ligand for CD161B, resulted in a reduced level of enhanced lytic function following NK:DC co-culture. This is the first report of NK receptors responsible for interaction with DCs having a role in mediating enhanced lytic function following NK:DC interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olcese L, Lang P, Vely F, et al: Human and mouse killer-cell inhibitory receptors recruit PTP1C and PTP1D protein tyrosine phosphatases. J Immunol 1996; 156:4531–4534.

    PubMed  CAS  Google Scholar 

  2. Vely F, Vivier E: Conservation of structural features reveals the existence of a large family of inhibitory cell surface receptors and noninhibitory/activatory counterparts. J Immunol 1997; 159:2075–2077.

    PubMed  CAS  Google Scholar 

  3. Lanier LL. Natural killer cell receptor signaling. Curr Opin Immunol 2003; 15:308–314.

    Article  PubMed  CAS  Google Scholar 

  4. Lazetic S, Chang C, Houchins JP, Lanier LL, Phillips JH: Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2D subunits. J Immunol 1996; 157:4741–4745.

    PubMed  CAS  Google Scholar 

  5. Chambers WH, Vujanovic NL, DeLeo AB, Olszowy MW, Herberman RB, Hiserodt JC. Monoclonal antibody to a triggering structure expressed on rat natural killer (NK) cells and adherent lymphokine activated killer (ALAK) cells. J Exp Med 1989; 169:1373–1389.

    Article  PubMed  CAS  Google Scholar 

  6. Karlhofer FM, Yokoyama WM. Stimulation of murine natural killer (NK) cells by a monoclonal antibody specific for the NK1. 1 antigen. IL-2-activated NK cells possess additional specific stimulation pathways. J Immunol 1991; 146:3662–3673.

    PubMed  CAS  Google Scholar 

  7. Ryan JC, Niemi EC, Goldfien RD, Hiserodt JC, Seaman WE. NKR-P1, an activating molecule on rat natural killer cells, stimulates phosphoinositide turnover and a rise in intracellular calcium. J Immunol 1991; 147:3244–4350.

    PubMed  CAS  Google Scholar 

  8. Campbell KS, Giorda R: The cytoplasmic domain of rat NKR-P1 receptor interacts with the N-terminal domain of p56(lck) via cysteine residues. Eur J Immunol 1997; 27:72–77.

    Article  PubMed  CAS  Google Scholar 

  9. Li J, Rabinovich BA, Hurren R, Shannon J, Miller RG: Expression cloning and function of the rat NK activating and inhibitory receptors NKR-P1A and-P1B. Int Immunol 2003; 15:411–416.

    Article  PubMed  CAS  Google Scholar 

  10. Yokoyama WM, Plougastel BF: Immune functions encoded by the natural killer gene complex. Nat Rev Immunol 2003; 3:304–316.

    Article  PubMed  CAS  Google Scholar 

  11. Ljunggren HG, Karre K: In search of the “missing self”: MHC molecules and NK cell recognition. Immunol Today 1990; 11:237–244.

    Article  PubMed  CAS  Google Scholar 

  12. Karre K. NK cells, MHC class I molecules and the missing self. Scand J Immunol 2002; 55:221–228.

    Article  PubMed  CAS  Google Scholar 

  13. Zhou H, Kartsogiannis V, Hu YS, et al: A novel osteoblast-derived C-type lectin that inhibits osteoclast formation. J Biol Chem 2001; 276:14916–14923.

    Article  PubMed  CAS  Google Scholar 

  14. Zhou H, Kartsogiannis V, Quinn JM, et al: Osteoclast inhibitory lectin, a family of new osteoclast inhibitors. J Biol Chem 2002; 277:48808–48815.

    Article  PubMed  CAS  Google Scholar 

  15. Iizuka K, Naidenko OV, Plougastel BF, Fremont DH, Yokoyama WM. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat Immunol 2003; 4:801–807.

    Article  PubMed  CAS  Google Scholar 

  16. Carlyle JR, Jamieson AM, Gasser S, Clingan CS, Arase H, Raulet DH: Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc Natl Acad Sci USA 2004; 101:3527–3532.

    Article  PubMed  CAS  Google Scholar 

  17. Ryan JC, Niemi EC, Nakamura MC, Seaman WE: NKR-P1A is a target specific receptor that activates natural killer cell cytoticity. J Exp Med 1995; 181:1911–1915.

    Article  PubMed  CAS  Google Scholar 

  18. Lanier L, Chang C, Phillips JH: Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J Immunol 1994; 153:2417–2428.

    PubMed  CAS  Google Scholar 

  19. Pinard D, Olsson NO, Chambers WH, Martin F: High expression of NKR-P1 is not an absolute requirement for natural killer activity in BDIX rats. Cancer Immunol Immunother 1996; 42:15–23.

    Article  PubMed  CAS  Google Scholar 

  20. Bezouska K, Yuen CT, O'Brien J, et al: Oligosaccharide ligands for NKR-P1 protein activate NK cells and cytotoxicity. Nature 1994; 372:150–157.

    Article  PubMed  CAS  Google Scholar 

  21. Kogelberg H, Montero E, Bay S, Lawson AM, Feizi T: Re-evaluation of monosaccharide binding property of recombinant soluble carbohydrate recognition domain of the natural killer cell receptor NKR-P1A. J Biol Chem 1999; 274:30335–30346.

    PubMed  CAS  Google Scholar 

  22. Kogelberg H, Lawson AM, Muskett FW, Carruthers RA, Feizi T: Expression in Escherichia coli, folding in vitro, and characterization of the carbohydrate recognition domain of the natural killer cell receptor NKR-P1A. Protein Expr Purif 2000; 20:10–20.

    Article  PubMed  CAS  Google Scholar 

  23. Bezouska K, Vlahas G, Horvath O, et al: Rat natural killer cell antigen, NKR-P1, related to C-type animal lectins is a carbohydrate-binding protein. J Biol Chem 1994; 269:16945–16952.

    PubMed  CAS  Google Scholar 

  24. Bezouska K, Sklenar J, Dvorakova J, et al: NKR-P1A protein, an activating receptor of rat natural killer cells, binds to the chitobioase core of uncompletely glycosylated N-linked glycans, and to linear chitooligmers. Biochem Biophys Res Comm 1997; 238:149–153.

    Article  PubMed  CAS  Google Scholar 

  25. Kogelberg H, Fenkiel TA, Homans SW, Lubineau A, Feizi T: Conformational studies on the selectin and natural killer cell receptor ligands sulfo- and sialo-lacto-N-fucopentoses (SuLNFPII and SLNFPII) using NMR spectroscopy and molecular dynamics simulations. Comparisons with the nonacidic parent molecule LNFPII. Biochem 1996; 35:1954–1964.

    Article  CAS  Google Scholar 

  26. Krist P, Herkommerova-Rajnochova E, Rauvolfova J, et al: Toward an optimal oligosaccharide ligand for rat natural killer cell activation receptor NKR-P1. Biochem Biophys Res Comm 2001; 287:11–20.

    Article  PubMed  CAS  Google Scholar 

  27. Sememuk T, Krist P, Pavlicek J, et al: Synthesis of chitooligomer-based glycoconjugates and their binding to the rat natural killer cell activation receptor NKR-P1. Glycoconj J 2001; 18:817–826.

    Article  Google Scholar 

  28. Poggi A, Costa P, Zocchi MR, Moretta L: NKRP1A molecule is involved in transendothelial migration of CD4+ human T cells. Immunol Lett 1997; 57:121–123.

    Article  PubMed  CAS  Google Scholar 

  29. Poggi A, Costa P, Zocchi MR, Moretta L: Phenotypic and functional analysis of CD4+ NKRP1A+ human T lymphocytes. Direct evidence that NKRP1A molecules is involved in transendothelial migration. Eur J Immunol 1997; 27:2345–2350.

    Article  PubMed  CAS  Google Scholar 

  30. Poggi A, Zocchi MR, Costa P, et al: IL 12-mediated NKRP1 up-regulation and consequent enhancement of endothelial transmigration of V delta 2+ TCR gamma delta+ T lymphocytes from healthy donors and multiple sclerosis patients. J Immunol 1999; 162:4349–4354.

    PubMed  CAS  Google Scholar 

  31. Poggi A, Zocchi MR, Carosio R, et al: Transendothelial migratory pathways of V deltal+ TCR gamma delta+ and V delta2+ TCR gamma delta+ T cells from healthy donors and multiple sclerosis patients: Involvement of phosphatidylinositol 3 kinase at calcium calmodulin-dependent kinase II. J Immunol 2002; 168:6071–6077.

    PubMed  CAS  Google Scholar 

  32. Fernandez NC, Lozier A, Flament C, et al: Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999; 5:405–411.

    Article  PubMed  CAS  Google Scholar 

  33. Yu Y, Hagihara M, Ando K, et al: Enhancement of human cord blood CD34+ cell-derived NK cell cytotoxicity by dendritic cells. J Immunol 2001; 166(3):1590–1600.

    PubMed  CAS  Google Scholar 

  34. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G: Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 2002; 195:327–333.

    Article  PubMed  CAS  Google Scholar 

  35. Piccioli D, Sbrana S, Melandri E, Valiante NM: Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 2002; 195:335–341.

    Article  PubMed  CAS  Google Scholar 

  36. Miller G, Lahrs S, Dematteo RP: Overexpression of interleukin-12 enables dendritic cells to activate NK cells and confer systemic antitumor immunity. FASEB J 2003; 17:728–730.

    PubMed  CAS  Google Scholar 

  37. Degli-Esposti MA, Smyth MJ: Close encounters of different kinds: dendritic cells and NK cells take center stage. Nat Rev Immunol 2005; 5:112–124.

    Article  PubMed  CAS  Google Scholar 

  38. Vujanovic NL, Herberman RB, Maghazachi AA, Hiserodt JC: Lymphokine-activated killer cells in rats. III. A simple method for the purification of large granular lymphocytes and their rapid expansion and conversion into lymphokine-activated killer cells. J Exp Med 1989; 167:15–29.

    Article  Google Scholar 

  39. Brissette-Storkus CS, Kettel JC, Witham TF, Giezeman-Smits KM, Villa LA, Chambers WH: Flt-3 ligand drives differentiation of rat bone marrow derived dendritic cells (DCs) expressing OX62 and/or CD161. J Leuk Biol 2002; 71:941–949.

    CAS  Google Scholar 

  40. Eissmann P, Beauchamp L, Wooters J, Tilton JC, Long EO, Watzl C: Molecular basis for positive and negative signaling by the natural killer cell receptor 2B4 (CD244). Blood 2005; 105:4722–4729.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Flint, M.S., Webb, K.M. et al. CD161B: ClrB interactions mediate activation of enhanced lysis of tumor target cells following NK cell:DC co-culture. Immunol Res 36, 43–50 (2006). https://doi.org/10.1385/IR:36:1:43

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:36:1:43

Key words

Navigation