Skip to main content
Log in

Pathogenesis of Mycobacterium avium infection

Typical responses to an atypical mycobacterium?

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Studying infections with Mycobacterium avium in mouse models has allowed the dissection of the antimycobacterial pathways of the mammalian host. Whereas the paradigm of cell-mediated immunity to intracellular pathogens has been confirmed, namely with regard to the pivotal roles of CD4+ T cells, macrophages, and the IL 12-IFNγ cytokine axis, atypical features have been uncovered such as the resistance to NO, the involvement of minor players in the induction of type 1 protective immunity (such as TLR2, CD40, and CD30), and the development of immunopathology during the infection with highly virulent strains such as the development of caseous necrosis of granulomas or the progressive emergence of severe lymphopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inderlied CB, Kemper CA, Bermudez LEM: The Mycobacterium avium complex. Clin Microbiol Rev 1993;6:266–310.

    PubMed  CAS  Google Scholar 

  2. Primm TP, Lucero CA, Falkinham III JO: Health impacts of environmental mycobacteria. Clin Microbiol Rev 2004;17:98–106.

    Article  PubMed  Google Scholar 

  3. Appelberg R: Immune response to atypical mycobacteria. Res. Immunol 1996;147:560–564.

    Article  PubMed  CAS  Google Scholar 

  4. Pedrosa J, Flórido M, Kunze ZM, et al: Characterization of the virulence of Mycobacterium avium complex isolates in mice. Clin Exp Immunol 1994;98:21–216.

    Google Scholar 

  5. Fenton MJ, Riley LW, Schlesinger LS: Receptor-mediated recognition of Mycobacterium tuberculosis by host cells, in Cole ST, et al (eds.) Tuberculosis and the Tubercle Bacillus. Washington, DC, ASM Press, 2005, pp. 405–426.

    Google Scholar 

  6. Bermudez LE, Young LS, Enkel H: Interaction of Mycobacterium avium complex with human macrophages: roles of membrane receptors and serum proteins. Infect Immun 1991;59:1697–1702.

    PubMed  CAS  Google Scholar 

  7. Polotsky VY, Belisle JT, Mikusova K, Ezekowitz AB, Joiner KA: Interaction of human mannose-binding protein with Mycobacterium avium. J Infect Dis 1997;175:1159–1168.

    PubMed  CAS  Google Scholar 

  8. Bermudez LE, Goodman J, Petrofsky M: Role of complement receptors in uptake of Mycobacterium avium by macrophages in vivo: evidence from studies using CD18-deficient mice. Infect Immun 1999;67:4912–4916.

    PubMed  CAS  Google Scholar 

  9. Bohlson SS, Strasser JA, Bower JJ, Schorey JS: Role of complement in Mycobacterium avium pathogenesis: in vivo and in vitro analyses of the host response to infection in the absence of complement component C3. Infect Immun 2001;69:7729–7735.

    Article  PubMed  CAS  Google Scholar 

  10. Middleton AM, Chadwick MV, Nicholson AG, et al: The role of Mycobacterium avium complex fibronectin attachment protein in adherence to the human respiratory mucosa. Molec Microbiol 2000;38:381–391.

    Article  CAS  Google Scholar 

  11. Bermudez LE, Petrofsky M, Goodman J: Exposure to low oxygen tension and increased osmolarity enhance the ability of Mycobacterium avium to enter intestinal epithelial (HT-29) cells. Infect Immun 1997;65:3768–3773.

    PubMed  CAS  Google Scholar 

  12. Frehel C, de Chastellier C, Lang T, Rastogi N: Evidence for inhibition of fusion of lysosomal and prelysosomal compartments with phagosomes in macrophages infected with pathogenic Mycobacterium avium. Infect Immun 1986;52:252–262.

    PubMed  CAS  Google Scholar 

  13. Crowle AJ, Dahl R, Ross E, May MH: Evidence that vesicles containing living, virulent Mycobacterium tuberculosis of Mycobacterium avium in cultured human macrophages are not acidic. Infect Immun 1991;59:1823–1831.

    PubMed  CAS  Google Scholar 

  14. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, et al: Luck of acidification in Mycobacterium avium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 1994;263:678–681.

    Article  PubMed  CAS  Google Scholar 

  15. Oh, YK, Straubinger RM: Intracellular fate of Mycobacterium avium: use of dual-label spectrofluorometry to investigate the influence of bacterial viability and opsonization on phagosomal pH and phagosome-lysosome interaction. Infect Immun 1996;64:319–325.

    PubMed  CAS  Google Scholar 

  16. Guérin I, de Chastellier C: Pathogenic mycobacteria disrupt the macrophage actin filament network. Infect Immun 2000;68:2655–2662.

    Article  PubMed  Google Scholar 

  17. Sturgill-Koszycki S, Schaible UE, Russell DG: Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO J 1996;15:6960–6968.

    PubMed  CAS  Google Scholar 

  18. Russell DG, Dant J, Sturgill-Koszycki S: Mycobacterium avium-and Mycobacterium tuberculosis-containing vacuoles are dynamic, fusion-competent vesicles that are accessible to glycosphingolipids from the host cell plasmalemma. J Immunol 1996;156:4764–4773.

    PubMed  CAS  Google Scholar 

  19. De Chastellier C, Lang T, Thilo L: Phagocytic processing of the macrophage endoparasite, Mycobacterium avium, in comparison to phagosomes which contain Bacillus subtilis or latex beads. Eur J Cell Biol 1995;68:167–182.

    PubMed  Google Scholar 

  20. Nathan C, Xie Q: Nitric oxide synthases: roles, tolls, and controls. Cell 1994;78:915–918.

    Article  PubMed  CAS  Google Scholar 

  21. Appelberg R, Orme IM: Effector mechanisms involved in cytokine-mediated bacteriostasis of Mycobacterium avium infections in murine macrophages. Immunology 1993;80:352–359.

    PubMed  CAS  Google Scholar 

  22. Bermudez LE: Differential mechanisms of intracellular killing of Mycobacterium avium and Listeria monocytogenes by activated human and murine macrophages. The role of nitric oxide. Clin Exp Immunol 1993;91:277–281.

    Article  PubMed  CAS  Google Scholar 

  23. Sarmento AM, Appelberg R: Involvement of reactive oxygen intermediates in the tumor necrosis factor-dependent bacteriostasis of Mycobacterium avium. Infect Immun 1996;64:3224–3230.

    PubMed  CAS  Google Scholar 

  24. Doherty TM, Sher A: Defects in cell-mediated immunity affect chronic, but not innate resistance of mice to Mycobacterium avium infection. J Immunol 1997;158:4822–4831.

    PubMed  CAS  Google Scholar 

  25. Gomes MS, Flórido M, Pais TF, Appelberg R: Improved clearnce of Mycobacterium avium upon disruption of the inducible nitric oxide synthase gene. J Immunol 1999;162:6734–6739.

    PubMed  CAS  Google Scholar 

  26. Ehlers S, Kutsch S, Benini J, et al: NOS2-derivednitric oxide regulates the size, quantity and quality of granuloma formation on in Mycobacterium avium-infected mice without affecting bacterial loads. Immunology 1999; 98:313–323.

    Article  PubMed  CAS  Google Scholar 

  27. Segal BH, Doherty TM, Wynn TA, Cheever AW, Sher A, Holland SM: The p47 phox-/-mouse model of chronic and cytokine responses to Mycobacterium avium and Schistosoma mansoni eggs. Infect Immun 1999;67:1659–1665.

    PubMed  CAS  Google Scholar 

  28. Gomes MS, Appelberg R: NRAMP1- or cytokine-induced bacteriostsis of Mycobacterium avium by mouse macrophages is independent of the respiratory burst. Microbiology 2002;148:3155–3160.

    PubMed  CAS  Google Scholar 

  29. North RJ, Lacourse R, Ryan L, Gros P: Consequence of Nramp 1 deletion to Mycobacterium tuberculosis infection in mice. Infect Immun 1999;67:5811–5814.

    PubMed  CAS  Google Scholar 

  30. Liu PT, Stenger S, Li H, et al: Foll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006;311:1770–1773.

    Article  PubMed  CAS  Google Scholar 

  31. Weiss B: Evidence for mutagenesis by nitric oxide during nitrate metabolism in Escherichia coli. J Bacteriol 2006;188:829–833.

    Article  PubMed  CAS  Google Scholar 

  32. Forbes JR, Gros P: Divalent metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol 2001;9:397–403.

    Article  PubMed  CAS  Google Scholar 

  33. Gomes MS, Appelberg R: Evidence for a link between iron metabolism and Nramp 1 gene function in innate resistance against Mycobacterium avium. Immunology 1998;95:165–168.

    Article  PubMed  CAS  Google Scholar 

  34. Appelberg R, Pedrosa J: Induction and expression of protective T cells during Mycobacterium avium infections in mice. Clin Exp Immunol 1992;87:379–385.

    Article  PubMed  CAS  Google Scholar 

  35. Castro AG, Minóprio P, Appelberg R: The relative impact of bacterial virulence and host genetic background on cytokine expression during Mycobacterium avium infection of mice. Immunology 1995;85:556–561.

    PubMed  CAS  Google Scholar 

  36. Al-Khafaji B, Kralovic S, Smith RD. Increased hepatic iron in the acquired immunodeficiency syndrome: an autopsy study. Modern Pathol 1997;10:474–480.

    CAS  Google Scholar 

  37. Govoni G, Gauthier S, Billia F, Iscove NN, Gros P: Cell-specific and inducible Nramp1 gene expression in mouse macrophages in vitro and in vivo. J Leukoc Biol 1997; 62:277–286.

    PubMed  CAS  Google Scholar 

  38. Baker ST, Barton CH, Biggs TE: A negative autoregulatory link between Nramp 1 function and expression. J Leukoc Biol 2000;67:501–507.

    PubMed  CAS  Google Scholar 

  39. Appelberg R: Macrophage nutriprive antimicrobial mechanisms. J Leukoc Biol 2006;79:1117–1128.

    Article  PubMed  CAS  Google Scholar 

  40. Gomes MS, Paul S, Moreira AL, Appelberg R, Rabinovitch M, Kaplan G: Survival of Mycobacterium avium and Mycobacterium tuberculosis in acidified vacuoles of murine macrophages. Infect Immun 1999;67:3199–3206.

    PubMed  CAS  Google Scholar 

  41. Pais TF, Appelberg R: Induction of Mycobacterium avium growth restriction and inhibition of phagosome-endosome interactions during macrophage activation and apoptosis induction by picolinic acid plus IFNγ. Microbiology 2004;150:1507–1518.

    Article  PubMed  CAS  Google Scholar 

  42. Pais TF, Appelberg R: Macrophage control of mycobacterial growth induced by picolinic acid is dependent on host cell apoptosis. J Immunol 2000;164:389–397.

    PubMed  CAS  Google Scholar 

  43. Kelley VA, Schorey JS: Mycobacterium's arrest of phagosome maturation in macrophages requires Rab5 activity and accessibility to iron. Molec Biol Cell 2003;14:3366–3377.

    Article  PubMed  CAS  Google Scholar 

  44. Appelberg R, Silva MT: T cell-dependent chronic neutrophilia during mycobacterial infections. Clin Exp Immunol 1989;78:478–483.

    PubMed  CAS  Google Scholar 

  45. Silva MT, Silva MNT, Appelberg R: Neutrophil-macrophage cooperation in the host defense against mycobacterial infections. Microb Pathogen 1989;6:369–380.

    Article  CAS  Google Scholar 

  46. Appelberg R, Castro AG, Gomes S, Pedrosa J, Silva MT: Susceptibility of beige mice to Mycobacterium avium: role of neutrophils. Infect Immun 1995;63:3381–3387.

    PubMed  CAS  Google Scholar 

  47. Petrofsky M, Bermudez LE: Neutrophils from Mycobacterium avium-infected mice produce TNF-α, IL-12, and IL-1β and have a putative role in early host response. Clin Immunol 1999;91:354–358.

    Article  PubMed  CAS  Google Scholar 

  48. Appelberg R, Castro AG, Pedrosa J, Silva RA, Orme IM, Minóprio P: Role of gamma interferon and tumor necrosis factor alpha during T-cell-independent and-dependent phases of Mycobacterium avium infection. Infect Immun 1994;62:3962–3971.

    PubMed  CAS  Google Scholar 

  49. Flórido M, Correia-Neves M, Cooper AM, Appelberg R: The cytolytic activity of natural killer cells is not involved in the restriction of Mycobacterium avium growth. Int Immunol 2003;15:895–901.

    Article  PubMed  Google Scholar 

  50. Feng C, Scanga CA, Collazo-Custodio CM, et al: Mice lacking myeloid differentiation factor 88 display profound defects in host resistance and immune responses to Mycobacterium avium infection not exhibited by Toll-like receptor 2 (TLR2)- and TLR4-deficient animals. J Immunol 2003;171:4758–4764.

    PubMed  CAS  Google Scholar 

  51. Gomes MS, Flórido M, Cordeiro JV, et al: Limited role of the Toll-like receptor-2 in resistance to Mycobacterium avium. Immunology 2004;111:179–185.

    Article  PubMed  CAS  Google Scholar 

  52. Thoma-Uszynski S, Stenger S, Takeuchi O, et al.: Induction of direct antimicrobial activity through mammalian Toll-like receptors. Science 2001;291:1544–1547.

    Article  PubMed  CAS  Google Scholar 

  53. Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A: TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 2005;202:1715–1724.

    Article  PubMed  CAS  Google Scholar 

  54. Furney SK, Skinner PS, Roberts AD, Appelberg R, Orme IM: Capacity of Mycobacterium avium isolates to grow well or poorly in murine macrophages resides in their ability to induce secretion of tumor necrosis factor. Infect Immun 1992;60:4410–4413.

    PubMed  CAS  Google Scholar 

  55. Sarmento AM, Appelberg R: Relationship between virulence of Mycobacterium avium strains and induction of tumor necrosis factor alpha production in infected mice and in in vitro-cultured mouse macrophages. Infect Immun 1995;63:3759–3764.

    PubMed  CAS  Google Scholar 

  56. Shiratsuchi H, Toossi Z, Mettler MA, Ellner JJ: Colonial morphotype as a determinant of cytokine expression by human monocytes infected with Mycobacterium avium. J Immunol 1993;150:2945–2954.

    PubMed  CAS  Google Scholar 

  57. Shiratsuchi H, Ellner JJ: Expression of IL-18 by Mycobacterium avium-infected human monocytes: association with M. avium virulence. Clin Exp Immunol 2001;123:203–209.

    Article  PubMed  CAS  Google Scholar 

  58. Blumenthal A, Lauber J, Hoffmann R, et al: Common and unique gene expression signatures of human macrophages in response to four strains of Mycobacterium avium that differ in their growth and persistence characteristics. Infect Immun 2005;73:3330–3341.

    Article  PubMed  CAS  Google Scholar 

  59. Fattorini L, Xiao Y, Li B, Santoro C, Ippoliti F, Orefici G: Induction of IL-1β, IL-6, TNF-α, GM-CSF, and G-CSF in human macrophages by smooth transparent and smooth opaque colonial variants of Mycobacterium avium. J Med Microbiol 1994;40:129–133.

    Article  PubMed  CAS  Google Scholar 

  60. Saunders BM, Cheers C: Inflammatory response following intranasal infection with Mycobacterium avium complex: role of T-cell subsets and gamma interferon. Infect Immun 1995;63:2282–2287.

    PubMed  CAS  Google Scholar 

  61. Bermudez LE, Petrofsky M: Host defense against Mycobacterium avium does not have an absolute requirement for major histocompatibility complex class I-restricted T cells. Infect Immun 1999;67:3108–3111.

    PubMed  CAS  Google Scholar 

  62. Petrofsky M, Bermudez LE: CD4+ T cells but not CD8+ or γ δ+ lymphocytes are required for host protection against Mycobacterium avium infection and dissemination through the intestinal route. Infect Immun 2005;73:2621–2627.

    Article  PubMed  CAS  Google Scholar 

  63. Flórido M, Gonçalves AS, Silva RA, Ehlers S, Cooper AM, Appelberg R: Resistance of virulent Mycobacterium avium to gamma interferon-mediated antimicrobial activity suggests additional signals for induction of mycobacteriostasis. Infect Immun 1999;67:3610–3618.

    PubMed  Google Scholar 

  64. Silva RA, Flórido M, Appelberg R: Interleukin-12 primes CD4+T cells for interferon-γ production and protective immunity during Mycobacterium avium infection. Immunology 2001;103:368–374.

    Article  PubMed  CAS  Google Scholar 

  65. Castro AG, Silva RA, Appelberg R: Endogenously produced IL-12 is required for the induction of protective T cells during Mycobacterium avium infections in mice. J Immunol 1995;155:2013–2019.

    PubMed  CAS  Google Scholar 

  66. Saunders BM, Zhan Y, Cheers C: Endogenous interleukin-12 is involved in resistance of mice to Mycobacterium avium complex infection. Infect Immun 1995; 63:4011–4015.

    PubMed  CAS  Google Scholar 

  67. Silva RA, Pais TF, Appelberg R: Evaluation of IL-12 in immunotherapy and vaccine design in experimental Mycobacterium avium infections. J Immunol 1998;161: 5578–5585.

    PubMed  CAS  Google Scholar 

  68. Doherty TM, Sher A: IL-12 promotes drug-induced clearance of Mycobacterium avium infection in mice. J Immunol 1998;160:5428–5435.

    PubMed  CAS  Google Scholar 

  69. Kobayashi K, Kasama T, Yamazaki J, et al: Protection of mice from Mycobacterium avium infection by recombinant interleukin-12. Antimicrob Ag Chemother 1995; 39:1369–1371.

    CAS  Google Scholar 

  70. Kobayashi K Yamazaki J, Kasama T, Katsura T, et al: Interleukin (IL)-12 deficiency in susceptible mice infected with Mycobacterium avium and amelioration of established infection by IL-12 replacement therapy. J Infect Dis 1996;174:564–573.

    PubMed  CAS  Google Scholar 

  71. Kang BY, Chung SW, Lim YS, et al. Interleukin-12-secreting fibroblasts are more efficient than free recombinant interleukin-12 in inducing the persistent resistance to Mycobacterium avium complex infection. Immunology 1999;97:474–480.

    Article  PubMed  CAS  Google Scholar 

  72. Bermudez LE, Petrofsky M, Wu M, Young LS: Clarithromycin significantly improves interleukin-12-mediated anti-Mycobacterium avium activity and abolishes toxicity in mice. J Infect Dis 1998;178:896–899.

    Article  PubMed  CAS  Google Scholar 

  73. Ehlers S, Lehmann J, Mossmann H, Alber G, Holscher C: Interleukin-12p40 mediates transient protection against Mycobacterium avium infection in the absence of interleukin-12. Immunobiology 2005;210:217–227.

    Article  PubMed  CAS  Google Scholar 

  74. Flórido M, Gonçalves AS, Gomes MS, Appelberg R: CD40 is required for the optimal induction of protective immunity to Mycobacterium avium. Immunology 2004; 111:323–327.

    Article  PubMed  CAS  Google Scholar 

  75. Flórido M, Borges M, Yagita H, Appelberg R: Contribution of CD30/CD153 but not of CD27/CD70, CD134/OX40L, or CD137/4-1BBL to the optimal induction of protective immunity to Mycobacterium avium. J Leukoc Biol 2004;76:1039–1046.

    Article  PubMed  CAS  Google Scholar 

  76. Kim SH, Cho D, Kim TS: Induction of in vivo resistance to Mycobacterium avium infection by intramuscular injection with DNA encoding interleukin-18. Immunology 2001;102:234–241.

    Article  PubMed  CAS  Google Scholar 

  77. Smith D, Hansch H, Bancroft G, Ehlers S: T-cell-independent granuloma formation in response to Mycobacterium avium: role of tumour necrosis factor-α and interferon-γ. Immunology 1997;92:413–421.

    Article  PubMed  CAS  Google Scholar 

  78. Ehlers S, Benini J, Kutsch S, Endres R, Rietschel ET, Pfeffer K: Fatal granuloma necrosis without exacerbated mycobacterial growth in tumor necrosis factor receptor p55 gene-deficient mice intravenously infected with Mycobacterium avium. Infect Immun 1999;67:3571–3579.

    PubMed  CAS  Google Scholar 

  79. Ehlers S, Kutsch S, Ehlers E, Benini J, Pfeffer K: Lethal granuloma disintegration in mycobacteria-infected TNFRp55-/- mice is dependent on T cells and IL-12. J Immunol 2000;165:483–492.

    PubMed  CAS  Google Scholar 

  80. Flórido M, Appelberg R: Granuloma necrosis during Mycobacterium avium infection does not require tumor necrosis factor. Infect Immun 2004;72:6139–6141.

    Article  PubMed  CAS  Google Scholar 

  81. Silva RA, Pais TF, Appelberg R: Blocking the receptor for IL-10 improves antimycobacterial chemotherapy and vaccination. J Immunol 2001;167:1535–1541.

    PubMed  CAS  Google Scholar 

  82. Sano C, Sato K, Shimizu T, Kajitani H, Kawauchi H, Tomioka H: The modulating effects of proinflammatory cytokines interferon-gamma (IFN-γ) and tumour necrosis factor-alpha (TNF-α), and immunoregulating cytokines IL-10 and transforming growth factor-beta (TGF-β), on anti-microbial activity of murine peritoneal macrophages against Mycobacterium avium-intracellulare complex. Clin Exp Med 1999;115:435–442.

    CAS  Google Scholar 

  83. Roach DR, Matin E, Bean AG, Rennick DM, Briscoe H, Britton WJ: Endogenous inhibition of antimycobacterial immunity by IL-10 varies between mycobacterial species. Scand J Immunol 2001;54:163–170.

    Article  PubMed  CAS  Google Scholar 

  84. Feng CG, Kullberg MC, Jankovic D, et al: Transgenic mice expressing human interleukin-10 in the antigen-presenting cell compartment show increased susceptibility to infection with Mycobacterium avium associated with decreased macrophage effector function and apoptosis. Infect Immun 2002;70:6672–6679.

    Article  PubMed  CAS  Google Scholar 

  85. Appelberg R, Castro AG, Pedrosa J, Minóprio P: Role of interleukin-6 in the induction of protective T cells during mycobacterial infections in mice. Immunology 1994;82: 361–364.

    PubMed  CAS  Google Scholar 

  86. Leal IS, Smedegard B, Andersen P, Appelberg R: Interleukin-6 and interleukin-12 participate in induction of a type 1 protective T-cell response during vaccination with a tuberculosis subunit vaccine. Infect Immun 1999;67:5747–5754.

    PubMed  CAS  Google Scholar 

  87. Flórido M, Pearl JE, Solache A, et al: Gamma interferon-induced T-cell loss in virulent Mycobacterium avium infection. Infect Immun 2005;73:3577–3586.

    Article  PubMed  CAS  Google Scholar 

  88. Flórido M, Cooper AM, Appelberg R: Immunological basis of the development of necrotic lesions following Mycobacterium avium infection. Immunology 2002; 106:590–601.

    Article  PubMed  Google Scholar 

  89. Ehlers S, Benini J, Held HD, Roeck C, Alber G, Uhlig S: αβ T cell receptor-positive cells and interferon-γ, but not inducible nitric oxide synthase, are critical for granuloma necrosis in a mouse model of mycobacteria-induced pulmonary immunopathology. J Exp Med 2001;194:1847–1859.

    Article  PubMed  CAS  Google Scholar 

  90. Flórido M, Appelberg R: Genetic control of immune-mediated necrosis of Mycobacterium avium granulomas. Immunology 2006;118:122–130.

    Article  PubMed  CAS  Google Scholar 

  91. Lousada S, Flórido M, Appelberg R: Regulation of granuloma fibrosis by nitric oxide during Mycobacterium avium experimental infection. Int J Exp Pathol 2006;87:307–315.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appelberg, R. Pathogenesis of Mycobacterium avium infection. Immunol Res 35, 179–190 (2006). https://doi.org/10.1385/IR:35:3:179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:35:3:179

Key Words

Navigation