Skip to main content

Advertisement

Log in

Dual role of the adaptor protein SLP-65

Organizer of signal transduction and tumor suppressor of Pre-B cell leukemia

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

B cell development is characterized by a coordinated progression through defined stages that are controlled at several checkpoints. Signals from the pre-B cell receptor (pre-BCR) are essential for regulated transition from the pre-B cell stage. The adaptor protein SLP-65 plays a key role in this signaling pathway. Recent findings indicate an additional function of SLP-64 as a tumor suppressor that regulates pre-B cell proliferation. We will discuss here the potential mechanisms by which SLP-65 controls the pre-B cell checkpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradl H, Jack HM: Surrogate light chain-mediated interaction of a soluble pre-B cell receptor with adherent cell lines. J Immunol 2001; 167(11):6403–6411.

    PubMed  CAS  Google Scholar 

  2. Gauthier L, Rossi B, Roux F, Termine E, Schiff C: Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc. Natl Acad Sci USA 2002; 99 (20): 13014–13019.

    Article  PubMed  CAS  Google Scholar 

  3. Karasuyama H, Rolink A, Melchers F: Surrogate light chain in B cell development. Adv Immunol 1996; 63: 1–41.

    Article  PubMed  CAS  Google Scholar 

  4. Kitamura D, Roes J, Kuhn R, Rajewsky K: AB cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 1991;350 (6317): 423–426.

    Article  PubMed  CAS  Google Scholar 

  5. Macpherson AJ, Lamarre A, McCoy K, et al.: IgA production without mu or delta chain expression in developing B cells. Nat Immunol 2001; 2 (7): 625–631.

    Article  PubMed  CAS  Google Scholar 

  6. Kitamura D, Kudo A, Schaal S, Muller W, Melchers F, Rajewsky K: A critical role of lambda 5 protein in B cell development. Cell 1992; 69 (5): 823–831.

    Article  PubMed  CAS  Google Scholar 

  7. Martensson A, Argon Y, Melchers F, Dul JL, Martensson IL: Partial block in B lymphocyte development at the transition into the pre-B cell receptor stage in Vpre-B1-deficient mice. Int Immunol 1999; 11 (3): 453–460.

    Article  PubMed  CAS  Google Scholar 

  8. Mundt C, Licence S, Shimizu T, Melchers F, Martensson IL: Loss of precursor B cell expansion but not allelic exclusion in VpreB1/VpreB2 double-deficient mice. J Exp Med 2001; 193 (4): 435–445.

    Article  PubMed  CAS  Google Scholar 

  9. Gong S, Nussenzweig MC: Regulation of an early developmental checkpoint in the B cell pathway by Ig beta. Science 1996; 272 (5260): 411–414.

    Article  PubMed  CAS  Google Scholar 

  10. Pelanda R, Braun U, Hobeika E, Nussenzweig MC, Reth M: B cell progenitors are arrested in maturation but have intact VDJ recombination in the absence of Ig-alpha and Ig-beta. J Immunol 2002; 169 (2): 865–872.

    PubMed  CAS  Google Scholar 

  11. Hombach J, Tsubata T, Leclercq L, Stappert H, Reth M: Molecular components of the B-cell antigen receptor complex of the IgM class. Nature 1990; 343 (6260): 760–762.

    Article  PubMed  CAS  Google Scholar 

  12. Turner M, Mee PJ, Costello PS, et al: Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 1995; 378 (6554): 298–302.

    Article  PubMed  CAS  Google Scholar 

  13. Hayashi K, Nittono R, Okamoto N, et al: The B cell-restricted adaptor BASH is required for normal development and antigen receptor-mediated activation of B cells. Proc Natl Acad Sci USA 2000; 97 (6): 2755–2760.

    Article  PubMed  CAS  Google Scholar 

  14. Jumaa H, Wollscheid B, Mitterer M, Wienands J, Reth M, Nielsen PJ: Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65. Immunity 1999; 11 (5): 547–554.

    Article  PubMed  CAS  Google Scholar 

  15. Khan WN, Alt FW, Gerstein RM, et al: Defective B cell development and function in Btk-deficient mice. Immunity 1995; 3 (3): 283–299.

    Article  PubMed  CAS  Google Scholar 

  16. Pappu R, Cheng AM, Li B, et al: Requirement for B cell linker protein (BLNK) in B cell development. Science 1999; 286 (5446): 1949–1954.

    Article  PubMed  CAS  Google Scholar 

  17. Wang D, Feng J, Wen R, et al: Phospholipase Cgamma2 is essential in the functions of B cell and several Fc receptors. Immunity 2000; 13 (1): 25–35.

    Article  PubMed  Google Scholar 

  18. Xu S, Tan JE, Wong EP, Manickam A, Ponniah S, Lam KP: B cell development and activation defects resulting in xid-like immunodeficiency in BLNK/SLP-65-deficient mice. Int Immunol 2000; 12 (3): 397–404.

    Article  PubMed  CAS  Google Scholar 

  19. Guo B, Kato RM, Garcia-Lloret M, Wahl MI, Rawlings DJ: Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 2000; 13 (2): 243–253.

    Article  PubMed  CAS  Google Scholar 

  20. Rolink AG, Winkler T, Melchers F, Andersson J: Precursor B cell receptor-dependent B cell proliferation and differentiation does not require the bone marrow or fetal liver environment. J Exp Med 2000; 191 (1): 23–32.

    Article  PubMed  CAS  Google Scholar 

  21. Bannish G, Euentes-Panana EM, Cambier JC, Pear WS, Monroe JG. Ligand-independent signaling functions for the B lymphocyte antigen receptor and their role in positive selection during B lymphopoiesis. J Exp Med 2001; 194 (11): 1583–1596.

    Article  PubMed  CAS  Google Scholar 

  22. Cheng PC, Dykstra ML, Mitchell RN, Pierce SK: A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J Exp Med 1999; 190 (11): 1549–1560.

    Article  PubMed  CAS  Google Scholar 

  23. Rolli V, Gallwitz M, Wossning T, et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell 2002; 10 (5): 1057–1069.

    Article  PubMed  CAS  Google Scholar 

  24. Futterer K, Wong J, Grucza RA, Chan AC, Waksman G: Structural basis for Syk tyrosine kinase ubiquity in signal transduction pathways revealed by the crystal structure of its regulatory SH2 domains bound to a dually phosphorylated ITAM peptide. J Mol Biol 1998; 281 (3): 523–537.

    Article  PubMed  CAS  Google Scholar 

  25. Kurosaki T, Johnson SA, Pao L, Sada K, Yamamura H, Cambier JC: Role of the Syk autophosphorylation site and SH2 domains in B cell antigen receptor signaling. J Exp Med 1995; 182 (6): 1815–1823.

    Article  PubMed  CAS  Google Scholar 

  26. Chiu CW, Dalton M, Ishiai M, Kurosaki T, Chan AC: BLNK: molecular scaffolding through “cis”-mediated organization of signaling proteins. EMBO J 2002; 21 (23): 6461–6472.

    Article  PubMed  CAS  Google Scholar 

  27. Baba Y, Hashimoto S, Matsushita M, et al: BLNK mediates Syk-dependent Btk activation. Proc Natl Acad Sci USA 2001; 98 (5): 2582–2586.

    Article  PubMed  CAS  Google Scholar 

  28. Fluckiger A-C, Li Z, Kato RM, et al: Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J 1998; 17 (7): 1973–1985.

    Article  PubMed  CAS  Google Scholar 

  29. Hashimoto A, Okada H, Jiang A, et al: Involvement of guanosine triphosphatases and phospholipase C-gamma2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B cell antigen receptor. J Exp Med 1998; 188 (7): 1287–1295.

    Article  PubMed  CAS  Google Scholar 

  30. Jiang A, Craxton A, Kurosaki T, Clark EA: Different protein tyrosine kinases are required for B cell antigen receptor-mediated activation of extracellular signal-regulated kinase, c-Jun NH2-terminal kinase 1, and p38 mitogen-activated protein kinase. J Exp Med 1998; 188 (7): 1297–1306.

    Article  PubMed  CAS  Google Scholar 

  31. Johmura S, oh-hora M, Inabe K, et al: Regulation of Vav localization in membrane rafts by adaptor molecules Grb2 and BLNK. Immunity 2003; 18 (6): 777–787.

    Article  PubMed  CAS  Google Scholar 

  32. Wienands J, Schweikert J, Wollscheid B, Jumaa H, Nielsen PJ, Reth M. SLP-65: a new signaling component in B lymphocytes which requires expression of the antigen receptor for phosphorylation. J Exp Med 1998; 188 (4): 791–795.

    Article  PubMed  CAS  Google Scholar 

  33. Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J: Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J 1996; 15 (10): 2442–2451.

    PubMed  CAS  Google Scholar 

  34. Vojtek AB, Hollenberg SM, Cooper JA: Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 1993; 74 (1): 205–214.

    Article  PubMed  CAS  Google Scholar 

  35. Nagaoka H, [???] et al: Ras mediates effector pathways responsible for pre-B cell survival, which is essential for the developmental progression to the late pre-B cell stage. J Exp Med 2000; 192 (2): 171–182.

    Article  PubMed  CAS  Google Scholar 

  36. Shaw AC, Swat W, Davidson L, Alt FW: Induction of Ig light chain gene rearrangement in heavy chain-deficient B cells by activated Ras. Proc Natl Acad Sci USA 1999; 96 (5): 2239–2243.

    Article  PubMed  CAS  Google Scholar 

  37. Ishiai M, Kurosaki M, Pappu R, et al: BLNK required for coupling Syk to PLC gamma 2 and Racl-JNK in B cells. Immunity 1999; 10 (1): 117–125.

    Article  PubMed  CAS  Google Scholar 

  38. Tan JE, Wong SC, Gan SK, Xu S, Lam KP: The adaptor protein BLNK is required for b cell antigen receptor-induced activation of nuclear factor-kappa B and cell cycle entry and survival of B lymphocytes. J Biol Chem 2001; 276 (23): 20055–20063.

    Article  PubMed  CAS  Google Scholar 

  39. Flemming A, Brummer T, Reth M, Jumaa H: The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat Immunol 2003; 4 (1): 38–43.

    Article  PubMed  CAS  Google Scholar 

  40. Rolink A, Kudo A, Karasuyama H, Kikuchi Y, Melchers F: Long-term proliferating early pre B cell lines and clones with the potential to develop to surface Ig-positive, mitogen reactive B cells in vitro and in vivo. EMBO J 1991; 10 (2): 327–336.

    PubMed  CAS  Google Scholar 

  41. Jumaa H, Bossaller L, Portugal K, et al: Deficiency of the adaptor SLP-65 in pre-B-cell acute lymphoblastic leukaemia. Nature 2003; 423 (6938): 452–456.

    Article  PubMed  CAS  Google Scholar 

  42. Goodman PA, Wood CM, Vassilev A, Mao C, Uckun FM: Spleen tyrosine kinase (Syk) deficiency in childhood pro-B cell acute lymphoblastic leukemia. Oncogene 2001; 20 (30): 3969–3978.

    Article  PubMed  CAS  Google Scholar 

  43. Jumaa H, Mitterer M, Reth M, Nielsen PJ: The absence of SLP65 and Btk blocks B cell development at the preB cell receptor-positive stage. Eur J Immunol 2001; 31 (7): 2164–2169.

    Article  PubMed  CAS  Google Scholar 

  44. Kersseboom R, Middendorp S, Dingjan GM, et al: Bruton's tyrosine kinase cooperates with the B cell linker protein SLP-65 as a tumor suppressor in Pre-B cells. J Exp Med 2003; 198 (1): 91–98.

    Article  PubMed  CAS  Google Scholar 

  45. Middendorp S, Dingjan GM, Maas A, Dahlenborg K, Hendriks RW: Function of Bruton's tyrosine kinase during B cell development is partially independent of its catalytic activity. J Immunol 2003; 171 (11): 5988–5996.

    PubMed  CAS  Google Scholar 

  46. Saito K, Tolias KF, Saci A, et al: BTK regulates PtdIns-4,5-P2 synthesis: importance for calcium signaling and PI3K activity. Immunity 2003; 19 (5): 669–678.

    Article  PubMed  CAS  Google Scholar 

  47. Scharenberg AM, El-Hillal O, Fruman DA, et al: Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J 1998; 17 (7): 1961–1972.

    Article  PubMed  CAS  Google Scholar 

  48. Ishiai M, Kurosaki M, Inabe K, Chan AC, Sugamura K, Kurosaki T: Involvement of LAT, Gads, and Grb2 in compartmentation of SLP-76 to the plasma membrane. J Exp Med 2000; 192 (6): 847–856.

    Article  PubMed  CAS  Google Scholar 

  49. Su YW, Jumaa H: LAT links the pre-BCR to calcium signaling. Immunity 2003; 19 (2): 295–305.

    Article  PubMed  CAS  Google Scholar 

  50. Brdicka T, Imrich M, Angelisova P, et al: Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J Exp Med 2002; 196 (12): 1617–1626.

    Article  PubMed  CAS  Google Scholar 

  51. Janssen E, Zhu M, Zhang W, Koonpaew S: LAB: a new membrane-associated adaptor molecule in B cell activation. Nat Immunol 2003; 4 (2): 117–123.

    Article  PubMed  CAS  Google Scholar 

  52. Gold MR, Crowley MT, Martin GA, McCormick F, DeFranco AL: Targets of B lymphocyte antigen receptor signal transduction include the p21ras GTPase-activating protein (GAP) and two GAP-associated proteins. J Immunol 1993; 150 (2): 377–386.

    PubMed  CAS  Google Scholar 

  53. Ellis C, Moran M, McCormick F, Pawson T: Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature 1990; 343 (6256): 377–381.

    Article  PubMed  CAS  Google Scholar 

  54. Di Cristofano A, Niki M, Zhao M, et al: p62(dok), a negative regulator of Ras and mitogen-activated protein kinase (MAPK) activity, opposes leukemogenesis by p210(bcr-abl). J Exp Med 2001; 194 (3): 275–284.

    Article  PubMed  Google Scholar 

  55. Yoshida K, Yamashita Y, Miyazato A, et al: Mediation by the protein-tyrosine kinase Tec of signaling between the B cell antigen receptor and Dok-1. J Biol Chem 2000; 275 (32): 24945–24952.

    Article  PubMed  CAS  Google Scholar 

  56. Kitanaka A, Mano H, Conley ME, Campana D: Expression and activation of the nonreceptor tyrosine kinase Tec in human B cells. Blood 1998; 91 (3): 940–948.

    PubMed  CAS  Google Scholar 

  57. Sherr CJ: Principles of tumor suppression. Cell 2004; 116 (2): 235–246.

    Article  PubMed  CAS  Google Scholar 

  58. Schebesta M, Pfeffer PL, Busslinger M: Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. Immunity 2002; 17 (4): 473–485.

    Article  PubMed  CAS  Google Scholar 

  59. Nakayama K, Ishida N, Shirane M, et al: Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996; 85 (5): 707–720.

    Article  PubMed  CAS  Google Scholar 

  60. Li Z, Dordai DI, Lee J, Desiderio S: A conserved degradation signal regulates RAG-2 accumulation during cell division and links V(D)J recombination to the cell cycle. Immunity 1996; 5 (6): 575–589.

    Article  PubMed  Google Scholar 

  61. Lin WC, Desiderio S: Cell cycle regulation of V(D)J recombination-activating protein RAG-2. Proc Natl Acad Sci USA 1994; 91 (7): 2733–2737.

    Article  PubMed  CAS  Google Scholar 

  62. Mizuta R, Mizuta M, Araki S, Kitamura D: RAG2 is down-regulated by cytoplasmic sequestration and ubiquitin-dependent degradation. J Biol Chem 2002; 277 (44): 41,423–41,427.

    Article  CAS  Google Scholar 

  63. Lee J, Desiderio S: Cyclin A/CDK2 regulates V(D)J recombination by coordinating RAG-2 accumulation and DNA repair. Immunity 1999; 11 (6): 771–781.

    Article  PubMed  CAS  Google Scholar 

  64. Shirane M, Harumiya Y, Ishida N, et al: Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J Biol Chem 1999; 274 (20): 13,886–13,893.

    Article  CAS  Google Scholar 

  65. Malek NP, Sundberg H, McGrew S, Nakayama K, Kyriakides TR, Roberts JM: A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature 2001; 413 (6853): 323–327.

    Article  PubMed  CAS  Google Scholar 

  66. Pagano M, [???] Tam SW, Theodoras AM, et al: Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995; 269 (5224): 682–685.

    Article  PubMed  CAS  Google Scholar 

  67. Carrano AC, Eytan E, Hershko A, Pagano M: SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999; 1 (4): 193–199.

    Article  PubMed  CAS  Google Scholar 

  68. Sutterluty H, Chatelain E, Marti A, et al: p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1999; 1 (4): 207–214.

    Article  PubMed  CAS  Google Scholar 

  69. Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H: p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol 1999; 9 (12): 661–664.

    Article  PubMed  CAS  Google Scholar 

  70. Jiang H, Chang FC, Ross AE, Lee J, Nakayama K, Desiderio S: Ubiquitylation of RAG-2 by Skp2-SCF links destruction of the V(D)J recombinase to the cell cycle. Mol Cell 2005; 18 (6): 699–709.

    Article  PubMed  CAS  Google Scholar 

  71. Wang W, Ungermannova D, Jin J, Harper JW, Liu X: Negative regulation of SCFSkp2 ubiquitin ligase by TGF-beta signaling. Oncogene 2004; 23 (5): 1064–1075.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Jumaa.

Additional information

These authors contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, S., Storch, B. & Jumaa, H. Dual role of the adaptor protein SLP-65. Immunol Res 34, 143–155 (2006). https://doi.org/10.1385/IR:34:2:143

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:34:2:143

Key Words

Navigation