Immunologic Research

, Volume 34, Issue 1, pp 1–12 | Cite as

Modulation of nuclear factor-ϰB by human T cell leukemia virus type 1 tax protein

Implications for oncogenesis and inflammation
  • Jean-Marie PeloponeseJr.
  • Man Lung Yeung
  • Kuan-Teh Jeang


Activation of the nuclear factor kappa B (NF-ϰB) transcription factor family by different stimuli, such as inflammatory cytokines, stress inducers, or pathogens, results in innate and adaptive immunity. While the main function of NF-ϰB is to promote the host's immune response, the NF-ϰB pathway is frequently dysregulated by invading viral pathogens. Human T cell leukemia virus type 1 (HTLV-1) is the causative agent of a fatal malignancy known as adult T cell leukemia (ATL) and an inflammatory disease named tropical spastic paraparesis/HTLV-1 associated myelopathy (TSP/HAM). HTLV-1 encodes an oncoprotein, Tax, which plays a significant role in the initiation of cellular transformation and the elicitation of the host's inflammatory responses. Here, we review current thinking on how Tax may affect both diseases through activation of NF-ϰB signaling.

Key Words

Human T cell leukemia virus (HTLV-1) Adult T cell leukemia (ATL) HTLV-1 Tax NF-ϰB IKK NIK Inflammation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gallo RC: History of the discoveries of the first human retroviruses: HTLV-1 and HTLV-2. Oncogene 2005; 24:5926–5930.PubMedCrossRefGoogle Scholar
  2. 2.
    Hinuma Y, Nagata K, Hanaoka M, et al.:Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci USA 1981; 10:6476–6480.CrossRefGoogle Scholar
  3. 3.
    Yoshida M: Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis. Oncogene 2005; 24:5931–5937.PubMedCrossRefGoogle Scholar
  4. 4.
    Proietti FA, Carneiro-Proietti ABF, Catalan-Soares BC, Murphy EL: Global epidemiology of HTLV-1 infection and associated diseases. Oncogene 2005; 24:6058–6068.PubMedCrossRefGoogle Scholar
  5. 5.
    Taylor GP, Matsuoka M: Natural history of adult T-cell leukemia/lymphoma and approaches to therapy. Oncogene 2005; 24:6047–6057.PubMedCrossRefGoogle Scholar
  6. 6.
    Takatsuki K: Discovery of adult T-cell leukemia. Retrovirology 2005; 2:16.PubMedCrossRefGoogle Scholar
  7. 7.
    Feuer G, and Chen IS: Mechanisms of human T-cell leukemia virus-induced leukemogenesis. Biochim Biophys Acta 1992; 1114:223–233.PubMedGoogle Scholar
  8. 8.
    Jeang KT, Giam CZ, Majone F, Aboud M: Life, death, and tax: role of HTLV-I oncoprotein in genetic instability and cellular transformation. J Biol Chem 2004; 279:31991–31994.PubMedCrossRefGoogle Scholar
  9. 9.
    Robek MD, Ratner L: Immortalization of CD4(+) and CD8(+) T lymphocytes by human T-cell leukemia virus type 1 Tax mutants expressed in a functional molecular clone. J Virol 1999; 73:4856–4865.PubMedGoogle Scholar
  10. 10.
    Nicot C, Harrod RL, Ciminale V, Franchini G: Human T-cell leukemia//lymphoma virus type 1 nonstructural genes and their functions. Oncogene 2005; 24:6026–6034.PubMedCrossRefGoogle Scholar
  11. 11.
    Grant C, Barmak K, Alefantis T, Yao J, Jacobson S, Wigdahl B: Human T cell leukemia virus type I and neurologic disease: events in bone marrow, peripheral blood, and central nervous system during normal immune surveillance and neuroinflammation. J Cell Physiol 2002; 190:133–159.PubMedCrossRefGoogle Scholar
  12. 12.
    Hall WW, Fujii M: Deregulation of cell-signaling pathways in HTLV-1 infection. Oncogene 2005; 24:5965–5975.PubMedCrossRefGoogle Scholar
  13. 13.
    Grassmann R, Aboud M, Jeang K-T: Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene 2005; 24:5976–5985.PubMedCrossRefGoogle Scholar
  14. 14.
    Laimore MD, Silverman L, Ratner L: Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene 2005; 24:6005–6015.CrossRefGoogle Scholar
  15. 15.
    Yamaoka S, Inoue H, Sakurai M, Sugiyama T, Hazama M, Yamada T, Hatanaka M: Constitutive activation of NF-kappa B is essential for transformation of rat fibroblasts by the human T-cell leukemia virus type I Tax protein. EMBO J 1996; 15:873–887.PubMedGoogle Scholar
  16. 16.
    Ng PW, Iha H, Iwanaga Y, et al: Genome-wide expression changes induced by HTLV-1 Tax: evidence for MLK-3 mixed lineage kinase involvement in Tax-mediated NF-kappaB activation. Oncogene 2001; 20:4484–4496.PubMedCrossRefGoogle Scholar
  17. 17.
    Jeang KT: Functional activities of the human T-cell leukemia virus type I Tax oncoprotein: cellular signaling through NF-kappa B. Cytokine Growth Factor Rev 2001; 12:207–217.PubMedCrossRefGoogle Scholar
  18. 18.
    Miyazato A, Sheleg S, Iha H, Li Y, Jeang KT: Evidence for NF-kappaB- and CBP-independent repression of p53's transcriptional activity by human T-cell leukemia virus type 1 Tax in mouse embryo and primary human fibroblasts. J Virol 2005; 79:9346–9350.PubMedCrossRefGoogle Scholar
  19. 19.
    Baeuerle PA, Henkel T: Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994; 12:141–179.PubMedGoogle Scholar
  20. 20.
    Silverman N, Maniatis T: NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev 2001; 15:2321–2342.PubMedCrossRefGoogle Scholar
  21. 21.
    Baeuerle PA, Baltimore D: NF-kappa B: ten years after. Cell 1996; 87:13–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Pahl HL: Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999; 18:6853–6866.PubMedCrossRefGoogle Scholar
  23. 23.
    Gerondakis S, Grossmann M, Nakamura Y, Pohl T, Grumont R: Genetic approaches in mice to understand Rel/NF-kappaB and IkappaB function: transgenics and knockouts. Oncogene 1999; 18:6888–6895.PubMedCrossRefGoogle Scholar
  24. 24.
    Doi TS, Marino MW, Takahashi T, et al: Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. Proc Natl Acad Sci USA 1999; 96: 2994–2999.PubMedCrossRefGoogle Scholar
  25. 25.
    Li Q, Estepa G, Memet S, Israel A, Verma IM: Complete lack of NF-kappaB activity in IKK1 and IKK2 double-deficient mice: additional defect in neurulation. Genes Dev 2000; 14:1729–1733.PubMedGoogle Scholar
  26. 26.
    Jumaa H, Wollscheid B, Mitterer M, Wienands J, Reth M, Nielsen PJ: Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65. Immunity 1999; 11:547–554.PubMedCrossRefGoogle Scholar
  27. 27.
    Hu Y, Baud V, Delhase M, et al: Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 1999; 284:316–320.PubMedCrossRefGoogle Scholar
  28. 28.
    Yin L, Wu L, Wesche H, et al: Defective lymphotoxinbeta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science 2001;291:2162–2165.PubMedCrossRefGoogle Scholar
  29. 29.
    May MJ, Ghosh S: Signal transduction through NF-kappa B. Immunol Today 1998; 19:80–88.PubMedCrossRefGoogle Scholar
  30. 30.
    Siebenlist U, Franzoso G, Brown K: Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol 1994; 10:405–455.PubMedCrossRefGoogle Scholar
  31. 31.
    Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA: Phylogenetic perspectives in innate immunity. Science 1999; 284:1313–1318.PubMedCrossRefGoogle Scholar
  32. 32.
    Karin M, Ben Neriah Y: Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000; 18:621–663.PubMedCrossRefGoogle Scholar
  33. 33.
    Whiteside ST, Israel A: I kappa B proteins: structure, function and regulation. Semin Cancer Biol 1997; 8:75–82.PubMedCrossRefGoogle Scholar
  34. 34.
    Henkel T, Zabel U, van Zee K, Muller JM, Fanning E, Baeuerle PA: Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kappa B subunit. Cell 1992; 68:1121–1133.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen FE, Huang DB, Chen YQ, Ghosh G: Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature 1998; 391:410–413.PubMedCrossRefGoogle Scholar
  36. 36.
    Cramer P, Larson CJ, Verdine GL, Muller CW: Structure of the human NF-kappaB p52 homodimer-DNA complex at 2.1 A resolution. EMBO J 1997; 16:7078–7090.PubMedCrossRefGoogle Scholar
  37. 37.
    Ghosh G, van Duyne G, Ghosh S, Sigler PB: Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature 1995; 373:303–310.PubMedCrossRefGoogle Scholar
  38. 38.
    Ghosh S, May MJ, Kopp EB: NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16:225–260.PubMedCrossRefGoogle Scholar
  39. 39.
    DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M: A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 1997; 388:548–554.PubMedCrossRefGoogle Scholar
  40. 40.
    Mercurio F, Zhu H, Murray BW, et al: IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 1997; 278:860–866.PubMedCrossRefGoogle Scholar
  41. 41.
    Regnier CH, Song HY, Gao X, Geoddel DV, Cao Z, Rothe M: Identification and characterization of an IkappaB kinase. Cell 1997; 90:373–383.PubMedCrossRefGoogle Scholar
  42. 42.
    Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV: IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 1997; 278:866–869.PubMedCrossRefGoogle Scholar
  43. 43.
    Yamaoka S, Courtois G, Bessia C, et al: Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 1998; 93:1231–1240.PubMedCrossRefGoogle Scholar
  44. 44.
    Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M: The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 1997; 91:243–252.PubMedCrossRefGoogle Scholar
  45. 45.
    Kunsch C, Rosen CA: NF-kappa B subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol 1993; 13:6137–6146.PubMedGoogle Scholar
  46. 46.
    Xiao G, Harhaj EW, Sun SC: NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001; 7:401–409.PubMedCrossRefGoogle Scholar
  47. 47.
    Dejardin E, Droin NM, Delhase M, et al: The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 2002; 17:525–535.PubMedCrossRefGoogle Scholar
  48. 48.
    Bonizzi G, Bebien M, Otero DC, et al: Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by Re1B:p52 dimers. EMBO J 2004; 23:4202–4210.PubMedCrossRefGoogle Scholar
  49. 49.
    Kannagi M, Harashima N, Kurihara K, Utsunomiya A, Tanosaki R, Masuda M: Adult T-cell leukemia: future prophylaxis and immunotherapy. Expert Rev Anticancer Ther 2004; 4:369–376.PubMedCrossRefGoogle Scholar
  50. 50.
    Korner M, Tarantino N, Debre P: Constitutive activation of NF-kB in human thymocytes. Biochem Biophys Res Commun 1991; 181:80–86.PubMedCrossRefGoogle Scholar
  51. 51.
    Ogura Y, Bonen DK, Inohara N, et al: A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411:603–606.PubMedCrossRefGoogle Scholar
  52. 52.
    Newton TR, Patel NM, Bhat-Nakshatri P, Stauss CR, Goulet RJ Jr., Nakshatri H: Negative regulation of transactivation function but not DNA binding of NF-kappaB and AP-1 by IkappaBbetal in breast cancer cells. J Biol Chem 1999; 274:18827–18835.PubMedCrossRefGoogle Scholar
  53. 53.
    Matsuoka M: Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL). Retrovirology 2005; 2:27.PubMedCrossRefGoogle Scholar
  54. 54.
    Sun S-C, Yamaoka S: Activation of NF-[kappa]B by HTLV-I and implications for cell transformation. Oncogene 2005; 24:5952–5964.PubMedCrossRefGoogle Scholar
  55. 55.
    Tamiya S, Matsuoka M, Etoh K, et al: Two types of defective human T-lymphotropic virus type I provirus in adult T-cell leukemia. Blood 1996; 88:3065–3073.PubMedGoogle Scholar
  56. 56.
    Higuchi M, Matsuda T, Mori N, et al: Elevated expression of CD30 in adult T-cell leukemia cell lines: possible role in constitutive NF-kappaB activation. Retrovirology 2005; 2:29.PubMedCrossRefGoogle Scholar
  57. 57.
    Horie R, Watanabe T, Morishita Y, et al: Ligand-independent signaling by overexpressed CD30 drives NF-kappaB activation in Hodgkin-Reed-Sternberg cells. Oncogene 2002; 21:2493–2503.PubMedCrossRefGoogle Scholar
  58. 58.
    Sun SC, Ballard DW: Persistent activation of NF-kappaB by the tax transforming protein of HTLV-1: hijacking cellular IkappaB kinases. Oncogene 1999; 18:6948–6958.PubMedCrossRefGoogle Scholar
  59. 59.
    Harhaj EW, Good L, Xiao G, et al: Somatic mutagenesis studies of NF-kappa B signaling in human T cells: evidence for an essential role of IKK gamma in NF-kappa B activation by T-cell costimulatory signals and HTLV-I Tax protein. Oncogene 2000; 19:1448–1456.PubMedCrossRefGoogle Scholar
  60. 60.
    Iha H, Kibler KV, Yedavalli VR, et al: Segregation of NF-kappaB activation through NEMO/IKKgamma by Tax and TNFalpha: implications for stimulus-specific interruption of oncogenic signaling. Oncogene 2003; 22:8912–8923.PubMedCrossRefGoogle Scholar
  61. 61.
    Xiao G, Harhaj EW, Sun SC: Domain-specific interaction with the I kappa B kinase (IKK) regulatory subunit IKK gamma is an essential step in tax-mediated activation of IKK. J Biol Chem 2000; 275:34060–34067.PubMedCrossRefGoogle Scholar
  62. 62.
    Semmes OJ, Jeang KT: Mutational analysis of human T-cell leukemia virus type I Tax: regions necessary for function determined with 47 mutant proteins. J Virol 1992; 66:7183–7192.PubMedGoogle Scholar
  63. 63.
    Smith MR, Greene WC: Identification of HTLV-I tax trans-activator mutants exhibiting novel transcriptional phenotypes. Genes Dev 1990; 4:1875–1885.PubMedGoogle Scholar
  64. 64.
    Harhaj EW, Sun SC: IKKgamma serves as a docking subunit of the IkappaB kinase (IKK) and mediates interaction of IKK with the human T-cell leukemia virus Tax protein. J Biol Chem 1999; 274:22911–22914.PubMedCrossRefGoogle Scholar
  65. 65.
    Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN: Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 2005; 24:6719–6728.PubMedCrossRefGoogle Scholar
  66. 66.
    Tanaka H, Fujita N, Tsuruo T: PDK1-mediated IKKbeta phosphorylation activates NF-kappa B signaling. J Biol Chem 2005; 280:40965–40973.PubMedCrossRefGoogle Scholar
  67. 67.
    Nicholson KM, Anderson NG: The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002; 14:381–395.PubMedCrossRefGoogle Scholar
  68. 68.
    Song G, Ouyang G, Bao S: The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005; 9:59–71.PubMedGoogle Scholar
  69. 69.
    Staal SP, Hartley JW: Thymic lymphoma induction by the AKT8 murine retrovirus. J Exp Med 1988; 167:1259–1264.PubMedCrossRefGoogle Scholar
  70. 70.
    Kane LP, Shapiro VS, Stokoe D, Weiss A: Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 1999; 9:601–604.PubMedCrossRefGoogle Scholar
  71. 71.
    Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP: Impaired Fas response and autoimmunity in Pten+/- mice. Science 1999; 285: 2122–2125.PubMedCrossRefGoogle Scholar
  72. 72.
    Testa JR, Bellacosa A: AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 2001; 98: 10983–10985.PubMedCrossRefGoogle Scholar
  73. 73.
    O'Mahony AM, Montano M, Van Beneden K, Chen LF, Greene WC: Human T-cell lymphotropic virus type 1 tax induction of biologically Active NF-kappaB requires IkappaB kinase-1-mediated phosphorylation of RelA/p65. J Biol Chem 2004; 279: 18137–18145.PubMedCrossRefGoogle Scholar
  74. 74.
    Coope HJ, Atkinson PG, Huhse B, et al: CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 2002; 21:5375–5385.PubMedCrossRefGoogle Scholar
  75. 75.
    Caamano JH, Rizzo CA, Durham SK, et al: Nuclear factor (NF)-kappa B2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. J Exp Med 1998; 187:185–196.PubMedCrossRefGoogle Scholar
  76. 76.
    Franzoso G, Carlson L, Poljak L, et al: Mice deficient in nuclear factor (NF)-kappa B/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture. J Exp Med 1998; 187:147–159.PubMedCrossRefGoogle Scholar
  77. 77.
    Ishikawa H, Carrasco D, Claudio E, Ryseck RP, Bravo R: Gastric hyperplasia and increased proliferative responses of lymphocytes in mice lacking the COOH-terminal ankyrin domain of NF-kappaB2. J Exp Med 1997; 186:999–1014.PubMedCrossRefGoogle Scholar
  78. 78.
    Saitoh T, Nakayama M, Nakano H, Yagita H, Yamamoto N, Yamaoka S: TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 2003; 278:36005–36012.PubMedCrossRefGoogle Scholar
  79. 79.
    Novack DV, Yin L, Hagen-Stapleton A, et al: The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 2003; 198:771–781.PubMedCrossRefGoogle Scholar
  80. 80.
    Xiao G, Fong A, Sun SC: Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. J Biol Chem 2004; 279:30099–30105.PubMedCrossRefGoogle Scholar
  81. 81.
    Qing G, Qu Z, Xiao G: Regulation of NF-kappa B2 p100 processing by its cis-acting domain. J Biol Chem 2005; 280:18–27.PubMedGoogle Scholar
  82. 82.
    Fracchiolla NS, Lombardi L, Salina M, et al: Structural alterations of the NF-kappa B transcription factor lyt-10 in lymphoid malignancies. Oncogene 1993; 8:2839–2845.PubMedGoogle Scholar
  83. 83.
    Zhang J, Chang CC, Lombardi L, Dalla-Favera R: Rearranged NFKB2 gene in the HUT78 T-lymphoma cell line codes for a constitutively nuclear factor lacking transcriptional repressor functions. Oncogene 1994; 9:1931–1937.PubMedGoogle Scholar
  84. 84.
    Rayet B, Gelinas C: Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999; 18:6938–6947.PubMedCrossRefGoogle Scholar
  85. 85.
    Thakur S, Lin HC, Tseng WT, et al: Rearrangement and altered expression of the NFKB-2 gene in human cutaneous T-lymphoma cells. Oncogene 1994; 9: 2335–2344.PubMedGoogle Scholar
  86. 86.
    Xiao G, Cvijic ME, Fong A, et al: Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. EMBO J 2001; 20:6805–6815.PubMedCrossRefGoogle Scholar
  87. 87.
    Lanoix J, Lacoste J, Pepin N, Rice N, Hiscott J: Overproduction of NFKB2 (lyt-10) and c-Rel: a mechanism for HTLV-I Tax-mediated trans-activation via the NF-kappa B signalling pathway. Oncogene 1994; 9:841–852.PubMedGoogle Scholar
  88. 88.
    Beraud C, Sun SC, Ganchi P, Ballard DW, Greene WC: Human T-cell leukemia virus type I Tax associates with and is negatively regulated by the NF-kappa B2 p100 gene product: implications for viral latency. Mol Cell Biol 1994; 14:1374–1382.PubMedGoogle Scholar
  89. 89.
    Chu ZL, Shin YA, Yang JM, DiDonato JA, Ballard DW: IKKgamma mediates the interaction of cellular IkappaB kinases with the tax transforming protein of human T cell leukemia virus type 1. J Biol Chem 1999; 274: 15297–15300.PubMedCrossRefGoogle Scholar
  90. 90.
    Jin DY, Giordano V, Kibler KV, Nakano H, Jeang KT: Role of adapter function in oncoprotein-mediated activation of NF-kappaB. Human T-cell leukemia virus type I Tax interacts directly with IkappaB kinase gamma. J Biol Chem 1999; 274:17402–17405.PubMedCrossRefGoogle Scholar
  91. 91.
    Xiao G, Sun SC: Aetivation of IKKalpha and IKKbeta through their fusion with HTLV-I tax protein. Oncogene 2000; 19:5198–5203.PubMedCrossRefGoogle Scholar
  92. 92.
    Qu Z, Qing G, Rabson A, Xiao G: Tax deregulation of NF-kappaB2 p100 processing involves both beta-TrCP-dependent and-independent mechanisms. J Biol Chem 2004; 279:44563–44572.PubMedCrossRefGoogle Scholar
  93. 93.
    Liao G, Sun SC: Regulation of NF-kappaB2/p100 processing by its nuclear shutting. Oncogene 2003; 22:4868–4874.PubMedCrossRefGoogle Scholar
  94. 94.
    Gallo RC: The discovery of the first human retrovirus: HTLV-1 and HTLV-2. Retrovirology 2005; 2:17.PubMedCrossRefGoogle Scholar
  95. 95.
    Uchiyama T: Human T cell leukemia virus type I (HTLV-I) and human diseases. Annu Rev Immunol 1997; 15:15–37.PubMedCrossRefGoogle Scholar
  96. 96.
    Yakova M, Lezin A, Dantin F, et al: Increased proviral load in HTLV-1-infected patients with rheumatoid arthritis or connective tissue disease. Retrovirology 2005; 2:4.PubMedCrossRefGoogle Scholar
  97. 97.
    Bangham CRM, Osame M: Cellular immune response to HTLV-1. Oncogene 2005; 24:6035–6046.PubMedCrossRefGoogle Scholar
  98. 98.
    Asquith B, Mosley AJ, Heaps A, et al: Quantification of the virus-host interaction in human T lymphotropic virus I infection. Retrovirology 2005; 2:75.PubMedCrossRefGoogle Scholar
  99. 99.
    Izumo S, Ijichi T, Higuchi I, Tashiro A, Takahashi K, Osame M: Neuropathology of HTLV-I-associated myelopathy—a report of two autopsy cases. Acta Paediatr Jpn 1992; 34:358–364.PubMedGoogle Scholar
  100. 100.
    Asquith B, Bangham CR: The role of cytotoxic T lymphocytes in human T-cell lymphotropic virus type 1 infection. J Theor Biol 2000; 207:65–79.PubMedCrossRefGoogle Scholar
  101. 101.
    Kwon H, Ogle L, Benitez B, et al: Lethal cutaneous disease in transgenic mice conditionally expressing type I human T cell leukemia virus Tax. J Biol Chem 2005; 280:35713–35722.PubMedCrossRefGoogle Scholar
  102. 102.
    Beg AA, Sha WC, Bronson RT, Baltimore D: Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes Dev 1995; 9:2736–2746.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Jean-Marie PeloponeseJr.
    • 1
  • Man Lung Yeung
    • 1
  • Kuan-Teh Jeang
    • 1
  1. 1.Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesda

Personalised recommendations