Skip to main content
Log in

Understanding the pathogenesis of psoriasis, psoriatic arthritis, and autoimmunity via a fusion of molecular genetics and immunology

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The goal of my laboratory is to understand the molecular genetics basis of the inflammatory skin disease psoriasis and associated psoriatic arthritis. In performing these studies my colleagues and I have begun to identify common pathways leading to autoimmunity as well, because some of the defective pathways leading to autoimmunity are the same in different autoimmune diseases. Some of these pathways are involved in determining the activation status of inflammatory cells in the resting state. Other pathways are likely to determine target organ specificity and will be unique to a particular disease. Our approaches rely on genetic studies with cases and families to identify the causative variants, and then functional studies to identify the role of these variants in the predisposition to psoriasis and autoimmunity. The advantage of genetics approaches to understanding diseases such as those of the immune system is that one can identify novel genes and pathways that were not previously suspected as being involved in either the immune system or tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacobson DL, Gange SJ, Rose NR, Graham NM: Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 1997;84:223–243.

    Article  PubMed  CAS  Google Scholar 

  2. Adebajo AO: Low frequency of autoimmune disease in tropical Africa [comment]. Lancet 1997;349:361, 362.

    Article  PubMed  CAS  Google Scholar 

  3. Collado-Mesa F, Barcelo A, Arheart KL, Messiah SE: Analisis ecologico de la incidencia y prevalencia en America Latina de diabetes tipo 1 con inicio en la ninez [An ecological analysis of childhood-onset type 1 diabetes incidence and prevalence in Latin America]. Rev Panam Salud Publica 2004;15:388–394.

    Article  PubMed  Google Scholar 

  4. Lea JP: Lupus nephritis in African Americans. Am J Med Sci 2002;323:85–89.

    Article  PubMed  Google Scholar 

  5. Bowcock AM, Cookson WO: The genetics of psoriasis, psoriatic arthritis and atopic dermatitis. Hum Mol Genet 2004;13:R43-R55.

    Article  PubMed  CAS  Google Scholar 

  6. Eisenberg R: Mechanisms of autoimmunity. Immunol Res 2003;27:203–218.

    Article  PubMed  CAS  Google Scholar 

  7. Becker KG, Simon RM, Bailey-Wilson JE, et al.: Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci USA 1998;95:9979–9984.

    Article  PubMed  CAS  Google Scholar 

  8. Helms C, Cao L, Krueger JG, et al: A putative RUNX1 binding site variant between SLC9A 3R1 and NAT9 is associated with susceptibility to psoriasis [see comment]. Nat Genet 2003;35:349–356.

    Article  PubMed  CAS  Google Scholar 

  9. Perez-Lorenzo R, Zambrano-Zaragoza JF, Saul A, Jimenez-Zamudio L, Reyes-Maldonado E, Garcia-Latorre E: Autoantibodies to autologous skin in guttate and plaque forms of psoriasis and cross-reaction of skin antigens with streptococcal antigens. Int J Dermatol 1998;37:524–531.

    Article  PubMed  CAS  Google Scholar 

  10. Ockenfels HM: [Trigger factors for psoriasis]. Hautarzt 2003;54:215–223.

    PubMed  CAS  Google Scholar 

  11. Zandman-Goddard G, Shoenfeld Y: HIV and autoimmunity. Autoimmun Rev 2002;1:329–337.

    Article  PubMed  CAS  Google Scholar 

  12. Morton NE, Collins A: Toward positional cloning with SNPs. Curr Opin Mol Ther 2002;4:259–264.

    PubMed  CAS  Google Scholar 

  13. Zhang K, Qin ZS, Liu JS, Chen T, Waterman MS, Sun F: Haplotype block partitioning and tag SNP selection using genotype data and their applications to association studies. Genome Res 2004;14:908–916.

    Article  PubMed  CAS  Google Scholar 

  14. Buckley RH: Transplantation immunology: organ and bone marrow. J Allergy Clin Immunol 2003;111:S733-S744.

    Article  PubMed  CAS  Google Scholar 

  15. Wong FS, Wen L: The study of HLA class II and autoimmune diabetes. Curr Mol Med 2003;3:1–15.

    Article  PubMed  CAS  Google Scholar 

  16. Tiilikainen A, Lassus A, Karyonen J, Vartiainen P, Julin M: Psoriasis and HLA-Cw6. Br J Dermatol 1980;102:179–184.

    Article  PubMed  CAS  Google Scholar 

  17. Capon F, Munro M, Barker J, Trembath R: Searching for the major histocompatibility complex psoriasis susceptibility gene. J Invest Dermatol 2002;118:745–751.

    Article  PubMed  CAS  Google Scholar 

  18. Tomfohrde J, Silverman A, Barnes R, et al: Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science 1994;264:1141–1145.

    Article  PubMed  CAS  Google Scholar 

  19. Alkhateeb A, Stetler GL, Old W, et al: Mapping of an autoimmunity susceptibility locus (AIS1) to chromosome 1p31.3-p32.2. Hum Mol Genet 2002;11:661–667.

    Article  PubMed  CAS  Google Scholar 

  20. Lacaud G, Gore L, Kennedy M, et al: Runx 1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood 2002;100:458–466.

    Article  PubMed  CAS  Google Scholar 

  21. Osato M, Yanagida M, Shigesada K, Ito Y: Point mutations of the RUNx 1/AML 1 gene in sporadic and familial myeloid leukemias. Int J Hematol 2001;74:245–251.

    Article  PubMed  CAS  Google Scholar 

  22. Prokunina L, Castillejo-Lopez C, Oberg F, et al: A regulatory polymorphism in PDCD 1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002;32:666–669.

    Article  PubMed  CAS  Google Scholar 

  23. Tokuhiro S, Yamada R, Chang X, et al: An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis [see comment]. Nat Genet 2003;35:341–348.

    Article  PubMed  CAS  Google Scholar 

  24. Peltekova VD, Wintle RF, Rubin, LA, et al: Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 2004;36:471–475.

    Article  PubMed  CAS  Google Scholar 

  25. Reczek D, Berryman M, Bretscher A: Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J Cell Biol 1997;139:169–179.

    Article  PubMed  CAS  Google Scholar 

  26. Begovich AB, Carlton VE, Honigberg LA, et al: A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004;75:330–337.

    Article  PubMed  CAS  Google Scholar 

  27. Bottini N, Musumeci L, Alonso A, et al: A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004;36:337, 338.

    Article  PubMed  CAS  Google Scholar 

  28. Kyogoku C, Langefeld CD, Ortmann WA, et al: Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 2004;75:504–507.

    Article  PubMed  CAS  Google Scholar 

  29. Ueda H, Howson JM, Esposito L, et al: Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003;423:506–511.

    Article  PubMed  CAS  Google Scholar 

  30. Guo D, Li M, Zhang Y, et al: A functional variant of SUMO4, a new IkappaBalpha modifier, is associated with type 1 diabetes. Nat Genet 2004;36:837–841.

    Article  PubMed  CAS  Google Scholar 

  31. Hugot JP, Chamaillard M, Zouali H, et al: Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001;411:599–603.

    Article  PubMed  CAS  Google Scholar 

  32. Rahman P, Bartlett S, Siannis F, et al: CARD15: a pleiotropic autoimmune gene that confers susceptibility to psoriatic arthritis. Am J Hum Genet 2003;73:677–681.

    Article  PubMed  CAS  Google Scholar 

  33. Hewett D, Samuelsson L, Polding J, et al: Identification of a psoriasis susceptibility candidate gene by linkage disequilibrium mapping with a localized single nucleotide polymorphism map. Genomics 2002;79: 305–314.

    Article  PubMed  CAS  Google Scholar 

  34. Hebert SC, Mount DB, Gamba G: Molecular physiology of cation-coupled Cl-cotransport: the SLC12 family. Pflügers Arch 2004;447:580–593.

    Article  PubMed  CAS  Google Scholar 

  35. Shenolikar S, Voltz JW, Minkoff CM, Wade JB, Weinman EJ: Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate contransporter type IIa and renal phosphate wasting. Proc Natl Acad Sci USA 2002;99: 11,470–11,475.

    Article  CAS  Google Scholar 

  36. Gisler SM, Probanic S, Bacic D, et al: PDZK1: I. A major scaffolder in brush borders of proximal tubular cells. Kidney Int 2003;64:1733–1745.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowcock, A.M. Understanding the pathogenesis of psoriasis, psoriatic arthritis, and autoimmunity via a fusion of molecular genetics and immunology. Immunol Res 32, 45–56 (2005). https://doi.org/10.1385/IR:32:1-3:045

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:32:1-3:045

Key Words

Navigation