Immunologic Research

, Volume 32, Issue 1–3, pp 31–43

T-Cell stimulation and regulation: With complements from CD46

  • Claudia Kemper
  • James W. Verbsky
  • Jeffrey D. Price
  • John P. Atkinson
Article

Abstract

Crosslinking of CD46 and CD3 on naïve human CD4+ T-lymphocytes induces interleukin-10 secretion and granzyme B expression. These highly proliferative T-regulatory type 1-like T-regulatory T-cells (Tregs) can suppress an immune response. We propose that this process is important in the prevention of chronic inflammation such as at epithelial borders and in deactivation of a successful immune response. Relative to the latter, once a complement-fixing polyclonal antibody response has been mounted, in most cases, the pathogen will be rapidly destroyed. At this time, the C3b/C4b-bearing immune complexes could initiate the deactivation arm of an immune response by shutting down immunocompetent cells through CD46-generated T-cells. Herein, we review this pathway for the induction of Tregs, focusing on a role for the complement system and especially signaling through CD46 on human T-cells.

Key Words

CD46 Complement T-regulatory T-cells Immunosuppression Interleukin-10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Volanakis JE: Overview of the complement system; in Volanakis JE, Frank MM (eds): The Human Complement System in Health and Disease, 10th ed. New York, Marcel Dekker, 1998, pp 9–32.Google Scholar
  2. 2.
    Vogt W: Anaphylatoxins. Complement 1986;3:177–188.PubMedGoogle Scholar
  3. 3.
    Wetsel RA: Structure, function and cellular expression of complement anaphylatoxin receptors. Curr Opin Immunol 1995;7:48–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Carroll MC, Prodeus AP: Linkages of innate and adaptive immunity. Curr Opin Immunol 1998;10:36–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT: C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 1996; 271:348–350.PubMedCrossRefGoogle Scholar
  6. 6.
    Nielsen CH, Fischer EM, Leslie RG: The role of complement in the acquired immune response. Immunology 2000;100:4–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Prodeus AP, Goerg S, Shen LM, et al.: A critical role for complement in maintenance of self-tolerance. Immunity 1998;9:721–731.PubMedCrossRefGoogle Scholar
  8. 8.
    Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP: Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 2003;421:388–392.PubMedCrossRefGoogle Scholar
  9. 9.
    Sakaguchi S: Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000;101:455–458.PubMedCrossRefGoogle Scholar
  10. 10.
    Shevach EM: Regulatory T cells in autoimmunity. Annu Rev Immunol 2000;18:423–449.PubMedCrossRefGoogle Scholar
  11. 11.
    Bluestone JA, Abbas AK: Natural versus adapative regulatory T cells. Nat Rev Immunol 2003;3:253–257.PubMedCrossRefGoogle Scholar
  12. 12.
    Jonuleit H, Schmitt E: The regulatory T cell family: distinct subsets and their interrelations. J Immunol 2003;171:6323–6327.PubMedGoogle Scholar
  13. 13.
    Fukaura H, Kent SC, Pietrusewicz ML, Khoury SJ, Weiner HL, Hafler DA: Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-β1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest 1996;98:70–77.PubMedGoogle Scholar
  14. 14.
    Groux H, O’Garra A, Bigler M, Antonenko S, de Vries SE, Roncarolo MG: A CD4+T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997;389:737–742.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL: Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994;265:1237–1240.PubMedCrossRefGoogle Scholar
  16. 16.
    Thornton AM, Shevach EM: CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998;188:287–296.PubMedCrossRefGoogle Scholar
  17. 17.
    Roncarolo MG, Levings MK: The role of different subsets of T regulatory cells in controlling autoimmunity. Curr Opin Immunol 2000;12:676–683.PubMedCrossRefGoogle Scholar
  18. 18.
    Liszewski MK, Post TW, Atkinson JP: Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu Rev Immunol 1991;9:431–455.PubMedCrossRefGoogle Scholar
  19. 19.
    Barilla-LaBarca ML, Liszewski MK, Lambris J, Hourcade D, Atkinson JP: Role of membrane cofactor protein (CD46) in regulation of C4b and C3b deposited on cells. J Immunol 2002;168:6298–6304.PubMedGoogle Scholar
  20. 20.
    Rooney IA, Oglesby TJ, Atkinson JP: Complement in human reproduction: activation and control. Immunol Res 1993;12:276–294.PubMedGoogle Scholar
  21. 21.
    Riley RC, Kemper C, Leung M, Atkinson JP: Characterization of human membrane cofactor protein (MCP; CD46) on spermatozoa. Mol Reprod Dev 2002;62: 534–546.PubMedCrossRefGoogle Scholar
  22. 22.
    Dorig RE, Marcil A, Chopra A, Richardson CD: The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 1993;75:295–305.PubMedCrossRefGoogle Scholar
  23. 23.
    Naniche D, Varior-Krishnan G, Cervoni F, et al.: Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 1993;67: 6025–6032.PubMedGoogle Scholar
  24. 24.
    Okada N, Liszewski MK, Atkinson JP, Caparon M: Membrane cofactor protein (MCP; CD46) is a keratinocyte receptor for the M protein of group A streptococcus. Proc Natl Acad Sci USA 1995;92:2489–2493.PubMedCrossRefGoogle Scholar
  25. 25.
    Kallstrom H, Liszewski MK, Atkinson JP, Jonsson A-B: Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisserial Mol Microbiol 1997;25:639–647.PubMedCrossRefGoogle Scholar
  26. 26.
    Santoro F, Kennedy PE, Locatelli G, Malnati MS, Berger EA, Lusso P: CD46 is a cellular receptor for human herpes virus 6. Cell 1999;99:817–827.PubMedCrossRefGoogle Scholar
  27. 27.
    Segerman A, Atkinson JP, Marttila M, Dennerquist V, Wadell G, Arnberg N: Adenovirus type 11 uses CD46 as a cellular receptor. J Virol 2002;77:9183–9191.CrossRefGoogle Scholar
  28. 28.
    Gaggar A, Shayakhmetov DM, Lieber A: CD46 is a cellular receptor for group B adenoviruses. Nat Med 2003;9:1408–1412.PubMedCrossRefGoogle Scholar
  29. 29.
    Cattaneo R: Four viruses, two bacteria, and one receptor: membrane cofactor protein (CD46) as pathogens’ magnet. J Virol 2004;78:4385–4388.PubMedCrossRefGoogle Scholar
  30. 30.
    Riley-Vargas RC, Gill DB, Kemper C, Liszewski MK, Atkinson JP: CD46: expanding beyond complement regulation. Trends Immunol 2004;25:496–503.PubMedCrossRefGoogle Scholar
  31. 31.
    Karp CL, Wysocka M, Wahl LM, et al: Mechanism of suppression of cell-mediated immunity by measles virus [erratum appears in Science 1997; 275(5303): 1053]. Science 1996;273:228–231.PubMedCrossRefGoogle Scholar
  32. 32.
    Kallstrom H, Islam MS, Berggren PO, Jonsson AB: Cell signaling by the type IV pili of pathogenic Neisseria. J Biol Chem 1998;273:21,777–21,782.CrossRefGoogle Scholar
  33. 33.
    Kurita-Taniguchi M, Fukui A, Hazeki K, Hirano A, et al.: Functional modulation of human macrophages through CD46 (measles virus receptor): production of IL-12 p40 and nitric oxide in association with recruitment of protein-tyrosine phosphatase SHP-1 to CD46. J Immunol 2000;165:5143–5152.PubMedGoogle Scholar
  34. 34.
    Hirano A, Kurita-Taniguchi M, Katayama Y, Matsumoto M, Wong TC, Seya T: Ligation of human CD46 with purified complement C3b or F(ab’)(2) of monoclonal antibodies enhances isoform-specific interferon gamma-dependent nitric oxide production in macrophages. J Biochem 2002;132:83–91.PubMedGoogle Scholar
  35. 35.
    Marie JC, Astier AL, Rivailler P, et al.: Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell-induced inflammation. Nat Immunol 2002;3:659–666.PubMedGoogle Scholar
  36. 36.
    Wang G, Liszewski MK, Chan AC, Atkinson JP: Membrane cofactor protein (MCP; CD46): isoform-specific tyrosine phosphorylation. J Immunol 20000;164: 1839–1846.Google Scholar
  37. 37.
    Astier AL, Trescol-Biemont M-C, Azocar O, Lamouille B, Rabourdin-Combe C: Cutting edge: CD46, a new costimulatory molecular for T cells that induces p120CBL and LAT phosphorylation. J Immunol 2000;164:6091–6095.PubMedGoogle Scholar
  38. 38.
    Zaffran Y, Destaing O, Roux A, et al.: CD46/CD3 costimulation induces morphological changes of human T cells and activation of Vav, Rac, and extracellular signal-regulated kinase mitogen-activated protein kinase. J Immunol 2001;167:6780–6785.PubMedGoogle Scholar
  39. 39.
    Thornton AM, Donovan EE, Piccirillo CA, Shevach EM: Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J Immunol 2004;172:6519–6523.PubMedGoogle Scholar
  40. 40.
    Grossman WJ, Verbsky JW, Tollefsen BJ, Kemper C, Atkinson JP, Ley TJ: Differential expression of granzyme A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 2004;104:2840–2848.PubMedCrossRefGoogle Scholar
  41. 41.
    Barry M, Bleackley RC: Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2002;2:401–409.PubMedGoogle Scholar
  42. 42.
    Malipiero U, Frei K, Spanaus KS, et al.: Myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis is chronic/relapsing in perforin knockout mice, but monophasic in Fas- and Fas ligand-deficient lpr and gld mice. Eur J Immunol 1997;27:3151–3160.PubMedCrossRefGoogle Scholar
  43. 43.
    Arico M, Imashuku S, Clementi R, et al.: Hemophagocytic lymphohistiocytosis due to germline mutations in SH2D1A, the X-linked lymphoproliferative disease gene. Blood 2001;97:1131–1133.PubMedCrossRefGoogle Scholar
  44. 44.
    Seya T, Hara T, Matsumoto M: Membrane cofactor protein (MCP, CD46) in seminal plasma and on spermatozoa in normal and “sterile” subjects. Eur J Immunol 1993;23:1322–1327.PubMedCrossRefGoogle Scholar
  45. 45.
    Mestas J, Hughes CCW: Of mice and not men: differences between mouse and human immunology. J Immunol 2004;172:2731–2738.PubMedGoogle Scholar
  46. 46.
    Foley S, Li B, Dehoff M, Molina M, Holers VM: Mouse Crry/p65 is a regulator of the alternative pathway of complement activation. Eur J Immunol 1993;23:1381–1384.PubMedCrossRefGoogle Scholar
  47. 47.
    Xu C, Mao D, Holers VM, Palanca B, Cheng AM, Molina H: A critical role for the murine complement regulator Crry in fetomaternal tolerance. Science 2000; 287:498–501.PubMedCrossRefGoogle Scholar
  48. 48.
    Kitamura M, Matsumiya K, Yamanaka M, et al.: Possible association of infertility with sperm-specific abnormality of CD46. J Repord Immunol 1997;33:83–88.CrossRefGoogle Scholar
  49. 49.
    Nomura M, Kitamura M, Matsumiya K, et al: Genomic analysis of idiopathic infertile patients with sperm-specific depletion of CD46. Exp Clin Immunogenet 2001; 18:42–50.PubMedCrossRefGoogle Scholar
  50. 50.
    Oldstone MB, Lewicki H, Thomas D, et al: Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease. Cell 1999;98:629–640.PubMedCrossRefGoogle Scholar
  51. 51.
    Kemper C, Leung M, Stephensen CB, et al: Membrane cofactor protein (MCP; CD46) expression in transgenic mice. Clin Exp Immunol 2001;124:180–189.PubMedCrossRefGoogle Scholar
  52. 52.
    Horvat B, Rivailler P, Varior-Krishnan G, Cardoso A, Gerlier D, Rabourdin-Combe C: Transgenic mice expressing human measles virus (MV) receptor CD46 provide cells exhibiting different permissivities to MV infections. J Virol 1996;70:6673–6681.PubMedGoogle Scholar
  53. 53.
    Rall GF, Manchester M, Daniels LR, Callahan EM, Belman AR, Oldstone MBA: A transgenic mouse model for measles virus infection of the brain. Proc Natl Acad Sci USA 1997;94:4659–4663.PubMedCrossRefGoogle Scholar
  54. 54.
    Evlashev A, Moyse E, Valentin H, et al.: Productive measles virus brain infection and apoptosis in CD46 transgenic mice. J Virol 2000;74:1373–1382.PubMedCrossRefGoogle Scholar
  55. 55.
    Evlashev A, Valentin H, Rivailler P, Azocar O, Rabourdin-Combe C, Horvat B: Differential permissivity to measles virus infection of human and CD46-transgenic murine lymphocytes. J Gen Virol 2001;82:2125–2129.PubMedGoogle Scholar
  56. 56.
    Hourcade D, Holers VM, Atkinson JP: The regulators of complement activation (RCA) gene cluster. Adv Immunol 1989;45:381–416.PubMedCrossRefGoogle Scholar
  57. 57.
    Mrkic B, Pavlovic J, Rulicke T, et al: Measles virus spread and pathogenesis in genetically modified mice. J Virol 1998;72:7420–7427.PubMedGoogle Scholar
  58. 58.
    Yannoutsos N, Ijzermans JNM, Harkes C, et al: A membrane cofactor protein transgenic mouse model for the study of discordant xenograft rejection. Genes Cell 1996;1409–1419.Google Scholar
  59. 59.
    Thorley BR, Milland J, Christiansen D, et al.: Transgenic expression of a CD46 (membrane cofactor protein) minigene: studies of xenotransplantation and measles virus infection. Eur J Immunol 1997;27:726–734.PubMedCrossRefGoogle Scholar
  60. 60.
    Blixenkrone-Moeller M, Bernard A, Bencsik A, et al.: Role of CD46 in measles virus infection in CD46 transgenic mice. Virology 1998;249:238–248.CrossRefGoogle Scholar
  61. 61.
    Johansson L, Rytkonen A, Bergman P, et al: CD46 in meningococcal disease. Science 2003;301:373–375.PubMedCrossRefGoogle Scholar
  62. 62.
    Stevens DL: Invasive group A streptococcal infections. Clin Infect Dis 1992;14:2–11.PubMedGoogle Scholar
  63. 63.
    Giannakis E, Jokiranta TS, Ormsby RJ, et al.: Identification of the streptococcal M protein binding site on membrane cofactor protein (CD46). J Immunol 2002; 168:4585–4592.PubMedGoogle Scholar
  64. 64.
    Mittrücker H-W, Kaufmann SHE: Regulatory T cells and infection: suppression revisited. Eur J Immunol 2004;34:306–312.PubMedCrossRefGoogle Scholar
  65. 65.
    McGuirk P, McCann C, Mills KHG: Pathogen-specific T-regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J Exp Med 2002;195:221–231.PubMedCrossRefGoogle Scholar
  66. 66.
    Lavelle EC, McNeela E, Armstrong ME, Leavy O, Higgins SC, Mills KHG: Cholera toxin promotes the induction of regulatory T cells specific for bystander antigens by modulating dendritic cell activation. J Immunol 2003;171:2384–2392.PubMedGoogle Scholar
  67. 67.
    Riley RC, Tannenbaum PL, Abbott DH, Atkinson JP: Cutting edge: inhibiting measles virus infection but promoting reproduction: an explanation for splicing and tissue-specific expression of CD46. J Immunol 2002; 169:5405–5409.PubMedGoogle Scholar
  68. 68.
    Manchester M, Gairin JE, Alvarez J, Liszewski MK, Atkinson JP, Oldstone MBA: Measles virus recognizes its receptor, CD46, via two distinct binding domains within SCRI-2, Virology 1997;233:174–184.PubMedCrossRefGoogle Scholar
  69. 69.
    Shevach EM: CD4+CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2002;2: 389–400.PubMedGoogle Scholar
  70. 70.
    Akbari O, Stock P, DeKruyff RH, Umetsu DT: Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med 2003;8:1024–1032.CrossRefGoogle Scholar
  71. 71.
    Weiner HL: The mucosal milieu creates tolerogenic dendritic cells and T R1 and T H3 regulatory cells. Nat Immunol 2001;2:671–672.PubMedCrossRefGoogle Scholar
  72. 72.
    Khoo UY, Proctor IE, McPherson AJ: CD4+T cell down-regulation in human intestinal mucosa: evidence for intestinal tolerance to luminal bacterial antigens. J Immunol 1997;158:3626–3634.PubMedGoogle Scholar
  73. 73.
    Papiernik M, de Moraes ML, Pontoux C, Vasseur F, Penit C: Regulatory CD4 T cells: expression of IL-2R alpha chain resistance to clonal deletion and IL-2 dependency. Int Immunol 1998;10:371–378.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Claudia Kemper
    • 1
  • James W. Verbsky
    • 2
  • Jeffrey D. Price
    • 3
  • John P. Atkinson
    • 1
  1. 1.Department of MedicineWashington University School of MedicineSt. Louis
  2. 2.Department of Pediatrics, Division of RheumatologyWashington University School of MedicineSt. Louis
  3. 3.Department of Graduate Program in ImmunologyWashington University School of MedicineSt. Louis

Personalised recommendations