Skip to main content
Log in

Chemokines

Control of primary and memory T-cell traffic

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Motility is a hallmark of leukocytes, and breakdown in the control of migration contributes to many inflammatory diseases. Chemotactic migration of leukocytes largely depends on adhesive interaction with the substratum and recognition of a chemoattractant gradient. Chemokines are secreted proteins and have emerged as key controllers of integrin function and cell locomotion. Numerous distinct chemokines exist that target all types of leukocytes, including hematopoietic precursors, leukocytes of the innate immune system, as well as naive memory, and effector lymphocytes. The combinatorial diversity in responsiveness to chemokines ensures the proper tissue distribution of distinct leukocyte subsets under normal and pathological conditions. Inflammatory chemokines are readily detected in lesional tissue and local cellular infiltrates carry corresponding chemokine receptors. Blocking of inflammatory chemokines represents a promising strategy for the development of novel anti-inflammatory therapeutics.

This review focuses on a separate class of chemokines, termed homeostatic chemokines, with steady-state production at diverse sites, including primary and secondary lymphoid tissues as well as peripheral (extralymphoid) tissues. More precisely, we discuss the chemokines involved in T-cell traffic during the initiation of adaptive immunity and compare the distinct migration properties of shortlived effector T cells and long-lived memory T cells. Memory T cells are currently classified according to the presence of the lymph node-homing receptor CCR7 into CCR7+ central memory T (TCM) cells and CCR7 effector memory T (TEM) cells. For better understanding memory T-cell function, we propose the distinction of a third category, termed peripheral immune surveillance T (Tps) cells, which typically reside in healthy peripheral tissues, such as skin, lung, and gastrointestinal tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Von Andrian UH, Mackay CR: T-cell function and migration. Two sides of the same coin. N Engl J Med 2000;14:1020–1034.

    Article  Google Scholar 

  2. Sallusto F, Mackay CR, Lanzavecchia A: The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 2000;18:593–620.

    Article  PubMed  CAS  Google Scholar 

  3. Loetscher P, Moser B, Baggiolini M: Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv Immunol 2000;74:127–180.

    PubMed  CAS  Google Scholar 

  4. Moser B, Loetscher P: Lymphocyte traffic control by chemokines. Nat Immunol 2001;2:123–128.

    Article  PubMed  CAS  Google Scholar 

  5. Moser B, Wolf M, Walz A, Loetscher P. Chemokines: multiple levels of leukocyte migration control. Trends Immunol 2004;25:75–84.

    Article  PubMed  CAS  Google Scholar 

  6. Baggiolini M, Dewald B, Moser B: Interleukin-8 and related chemotactic cytokines; CXC and CC chemokines. Adv Immunol 1994;55:97–179.

    PubMed  CAS  Google Scholar 

  7. Baggiolini M, Dewald B, Moser B: Human chemokines: an update. Annu Rev Immunol 1997;675–705.

  8. Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000;145–176.

  9. Murphy PM: International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 2002;2:227–229.

    Article  Google Scholar 

  10. Proudfoot AE: Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2002;2:106–115.

    Article  PubMed  CAS  Google Scholar 

  11. Thelen M: Dancing to the tune of chemokines. Nat Immunol 2001;2:129–134.

    Article  PubMed  CAS  Google Scholar 

  12. Salmi, M, Jalkanen S: How do lymphocytes know where to go: current concepts and enigmas of lymphocyte homing. Adv Immunol 1997;64:139–218.

    PubMed  CAS  Google Scholar 

  13. Butcher EC, Williams M, Youngman K, Rott L, Briskin M: Lymphocyte trafficking and regional immunity. Adv Immunol 1999;72:209–253.

    PubMed  CAS  Google Scholar 

  14. Dimitroff CJ, Kupper TS, Sackstein R: Prevention of leukocyte migration to inflamed skin with a novel fluorosugar modifier of cutaneous lymphocyte-associated antigen. J Clin Invest 2003;7:1008–1018.

    Article  CAS  Google Scholar 

  15. Wymann MP, Zvelebil M, Laffargue M: Phosphoinositide 3-kinase signalling: which way to target? Trends Pharmacol Sci 2003;7:366–376.

    Article  CAS  Google Scholar 

  16. Vicente-Manzanares M, Sancho D, Yanez-Mo M, Sanchez-Madrid F: The leukocyte cytoskeleton in cell migration and immune interactions. Int Rev Cytol 2002;216:233–289.

    PubMed  CAS  Google Scholar 

  17. Foxman EF, Campbell JJ, Butcher EC: Multistep navigation and the combinatoral control of leukocyte chemotaxis. J Cell Biol 1997;139:1349–1360.

    Article  PubMed  CAS  Google Scholar 

  18. Poznansky MC, Olszak IT, Foxall R, Evans RH, Luster AD, Scadden DT: Active movement of T cells away from a chemokine. Nat Med 2000:5:543–548.

    Google Scholar 

  19. Von Andrian UH, Mempel TR: Homing and cellular traffic in lymph nodes. Nat Rev Immunol 2003;11:867–878.

    Article  CAS  Google Scholar 

  20. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK: Visualizing the generation of memory CD4 T cells in the whole body. Nature 2001;6824:101–105.

    Article  Google Scholar 

  21. Masopust D, Vezys V, Marzo AL, Lefrancois L: Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001;5512:2413–2417.

    Article  Google Scholar 

  22. Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT: A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 1998;95:258–263.

    Article  PubMed  CAS  Google Scholar 

  23. Willimann K, Legler DF, Loetscher M, Roos RS, Delgado MB, Clark-Lewis I, et al. The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. Eur J Immunol 1998;28:2025–2034.

    Article  PubMed  CAS  Google Scholar 

  24. Charbonnier AS, Kohrgruber N, Kriehuber E, Stingl G, Rot A, Maurer D: Macrophage inflammatory protein 3α is involved in the constitutive trafficking of epidermal Langerhans cells. J Exp Med 1999;12:1755–1767.

    Article  Google Scholar 

  25. Weninger W, Carlsen HS, Goodarzi M, Moazed F, Crowley MA, Baekkevold ES, et al.: Naive T cell recruitment to nonlymphoid tissues: a role for endothelium-expressed CC chemokine ligand 21 in autoimmune disease and lymphoid neogenesis. J Immunol 2003;9:4638–4648.

    Google Scholar 

  26. Saeki H, Moore AM, Brown MJ, Hwang ST: Secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 1999;162:2472–2475.

    PubMed  CAS  Google Scholar 

  27. Sallusto F, Lanzavecchia A: Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol Rev 2000; 177:134–140.

    Article  PubMed  CAS  Google Scholar 

  28. Randolph GJ: Is maturation required for Langerhans cell migration? J Exp Med 2002;4:413–416.

    Article  CAS  Google Scholar 

  29. Vassileva G, Soto H, Zlotnik A, Nakano H, Kakiuchi T, Hedrick JA, Lira SA: The reduced expression of 6C kine in the plt mouse results from the deletion of one of two 6C kine genes. J Exp Med 1999;8:1183–1188.

    Article  Google Scholar 

  30. Geissmann F, Dieu-Nosjean MC, Dezutter C, Valladeau J, Kayal S, Leborgne M, et al. Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J Exp Med 2002;4:417–430.

    Article  CAS  Google Scholar 

  31. Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K, Libermann T, Detmar M: Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 2003;2:575–586.

    Google Scholar 

  32. Moser B, Schaerli P, Loetscher P: CXCR5(+) T cells: follicular homing takes center stage in T-helper-cell responses. Trends Immunol 2002;5:250–254.

    Article  Google Scholar 

  33. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B: CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 2000;11:1553–1562.

    Article  Google Scholar 

  34. Sprent J, Tough DF: T cell death and memory. Science 2001;5528:245–248.

    Article  Google Scholar 

  35. Kaech SM, Wherry EJ, Ahmed R: Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2002;4:251–262.

    Article  CAS  Google Scholar 

  36. Lanzavecchia A, Sallusto F: Progressive differentiation and selection of the fittest in the immune response. Nat Rev Immunol 2002;12:982–987.

    Article  CAS  Google Scholar 

  37. Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, et al.: Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med 2001;9:1361–1373.

    Article  Google Scholar 

  38. Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, Colonna M: Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med 1999;5:919–923.

    Article  PubMed  CAS  Google Scholar 

  39. De La RG, Longo N, Rodriguez-Fernandez JL, Puig-Kroger A, Pineda A, Corbi AL, Sanchez-Mateos P: Migration of human blood dendritic cells across endothelial cell monolayers: adhesion molecules and chemokines involved in subset-specific transmigration. J Leukoc Biol 2003;5:639–649.

    Google Scholar 

  40. Janatpour MJ, Hudak S, Sathe M, Sedgwick JD, McEvoy LM: Tumor necrosis factor-dependent segmental control of MIG expression by high endothelial venules in inflamed lymph nodes regulates monocyte recruitment. J Exp Med 2001;9:1375–1384.

    Article  Google Scholar 

  41. Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A: Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999;6754:708–712.

    Article  Google Scholar 

  42. van Leeuwen EM, Gamadia LE, Baars PA, Remmerswaal EB, ten Berge IJ, van Lier RA: Proliferation requirements of cytomegalovirus-specific, effector-type human CD8+ T cells. J Immunol 2002;10:5838–5843.

    Google Scholar 

  43. Campbell DJ, Butcher EC: Rapid acquisition of tissue-specific homing phenotypes by CD4(+) T cells activated in cutaneous or mucosal lymphoid tissues. J Exp Med 2002;1:135–141.

    Article  Google Scholar 

  44. Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosemblatt M, Von Andrian UH: Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 2003;6944:88–93.

    Article  CAS  Google Scholar 

  45. Johansson-Lindbom B, Svensson M, Wurbel MA, Malissen B, Marquez G, Agace W: Selectve generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J Exp Med 2003;6:963–969.

    Article  CAS  Google Scholar 

  46. Lefrancois L, Masopust D: T cell immunity in lymphoid and non-lymphoid tissues. Curr Opin Immunol 2002;4:503–508.

    Article  Google Scholar 

  47. Opferman JT, Ober BT, Ashton-Rickardt PG: Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 1999;5408:1745–1748.

    Article  Google Scholar 

  48. Hu H, Huston G, Duso D, Lepak N, Roman E, Swain SL: CD4(+) T cell effectors can become memory cells with high efficiency and without further division. Nat Immunol 2001;8:705–710.

    Article  Google Scholar 

  49. Wherry, EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R, Von Andrian UH, Ahmed R: Lineage relationship and protective immunity of memory CD8T cell subsets. Nat Immunol 2003;3:225–234.

    Article  CAS  Google Scholar 

  50. Kondrack RM, Harbertson J, Tan JT, McBreen ME, Surh CD, Bradley LM: Interleukin 7 regulates the survival and generation of memory CD4 cells. J Exp Med 2003;12:1797–1806.

    Article  CAS  Google Scholar 

  51. Li J, Huston G, Swain SL: IL-7 promotes the transition of CD4 effectors to persistent memory cells. J Exp Med 2003;12:1807–1815.

    Article  CAS  Google Scholar 

  52. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R: Selective expression of the interleukin 7 receptor identifies effector CD8T cells that give rise to long-lived memory cells. Nat Immunol 2003;12:1191–1198.

    Article  CAS  Google Scholar 

  53. Bos JD, Kapsenberg ML: The skin immune system: progress in cutaneous biology. Immunol Today 1993; 2:75–78.

    Article  Google Scholar 

  54. McLachlan JB, Hart JP, Pizzo SV, Shelburne CP, Staats HF, Gunn MD, Abraham SN: Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat Immunol 2003;12:1199–1205.

    Article  CAS  Google Scholar 

  55. Pablos JL, Amara A, Bouloc A, Santiago B, Caruz A, Galindo M, et al.: Stromal-cell derived factor is expressed by dendritic cells and endothelium in human skin. Am J Pathol 1999;5:1577–1586.

    Google Scholar 

  56. Fitzhugh DJ, Naik S, Caughman SW, Hwang ST: Cutting edge: C-C chemokine receptor 6 is essential for arrest of a subset of memory T cells on activated dermal microvascular endothelial cells under physiologic flow conditions in vitro. J Immunol 2000;12:6677–6681.

    Google Scholar 

  57. Nanki T, Hayashida K, El Gabalawy HS, Suson S, Shi K, Girschick HJ, et al.: Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J Immunol 2000;11:6590–6598.

    Google Scholar 

  58. Buckley CD, Amft N, Bradfield PF, Pilling D, Ross E, Arenzana-Seisdedos F, et al.: Persistent induction of the chemokine receptor CXCR4 by TGF-beta 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J Immunol 2000;6:3423–3429.

    Google Scholar 

  59. Campbell JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P, et al.: The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 1999;6746:776–780.

    Article  Google Scholar 

  60. Horikawa T, Nakayama T, Hikita I, Yamada H, Fujisawa R, Bito T, et al.: IFN-gamma-inducible expression of thymus and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in epidermal keratinocytes and their roles in atopic dermatitis. Int Immunol 2002;7:767–773.

    Article  Google Scholar 

  61. Nouri-Aria KT, Wilson D, Francis JN, Jopling LA, Jacobson MR, Hodge MR, et al.: CCR4 in human allergen-induced late responses in the skin and lung. Eur J Immunol 2002;7:1933–1938.

    Article  Google Scholar 

  62. Katou F, Ohtani H, Nakayama T, Ono K, Matsushima K, Saaristo A, et al.: Macrophage-derived chemokine (MDC/CCL22) and CCR4 are involved in the formation of T lymphocyte-dendritic cell clusters in human inflamed skin and secondary lymphoid tissue. Am J Pathol 2001;4:1263–1270.

    Google Scholar 

  63. Uchida T, Suto H, Ra C, Ogawa H, Kobata T, Okumura K: Preferential expression of T(h)2-type chemokine and its receptor in atopic dermatitis. Int Immunol 2002;12:1431–1438.

    Article  Google Scholar 

  64. Kakinuma T, Wakugawa M, Nakamura K, Hino H, Matsushima K, Tamaki K: High level of thymus and activation-regulated chemokine in blister fluid and sera of patients with bullous pemphigoid. Br J Dermatol 2003;2:203–210.

    Article  Google Scholar 

  65. Andrew DP, Ruffing N, Kim CH, Miao W, Heath H, Li Y, et al.: C-C chemokine receptor 4 expression defines a major subset of circulating nonintestinal memory T cells of both Th1 and Th2 potential. J Immunol 2001;1:103–111.

    Google Scholar 

  66. Homey B, Dieu-Nosjean MC, Wiesenborn A, Massacrier C, Pin JJ, Oldham E, et al.: Up-regulation of macrophage inflammatory protein-3 alpha/CCL20 and CC chemokine receptor 6 in psoriasis. J Immunol 2000;12:6621–6632.

    Google Scholar 

  67. Nakayama T, Fujisawa R, Yamada H, Horikawa T, Kawasaki H, Hieshima K, et al.: Inducible expression of a CC chemokine liver- and activation-regulated chemokine (LARC)/macrophage inflammatory protein (MIP)-3 alpha/CCL20 by epidermal keratinocytes and its role in atopic dermatitis. Int Immunol 2001;1:95–103.

    Article  Google Scholar 

  68. Kunkel EJ, Boisvert J, Murphy K, Vierra MA, Genovese MC, Wardlaw AJ, et al.: Expression of the chemokine receptors CCR4, CCR5, and CXCR3 by human tissue-infiltrating lymphocytes. Am J Pathol 2002;1:347–355.

    Google Scholar 

  69. Soler D, Humphreys TL, Spinola SM, Campbell JJ: CCR4 versus CCR10 in human cutaneous TH lymphocyte trafficking. Blood 2003;5:1677–1682.

    Article  CAS  Google Scholar 

  70. Morales J, Homey B, Vicari AP, Hudak S, Oldham E, Hedrick J, et al.: CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc Natl Acad Sci USA 1999;25:14470–14475.

    Article  Google Scholar 

  71. Homey B, Wang W, Soto H, Buchanan ME, Wiesenborn A, Catron D, et al.: Cutting edge: the orphan chemokine receptor G protein-coupled receptor-2 (GPR-2, CCR10) binds the skin-associated chemokine CCL27 (CTACK/ALP/ILC). J Immunol 2000;7:3465–3470.

    Google Scholar 

  72. Pan J, Kunkel EJ, Gosslar U, Lazarus N, Langdon P, Broadwell K, et al.: A novel chemokine ligand for CCR10 and CCR3 expressed by epithelial cells in mucosal tissues. J Immunol 2000;6:2943–2949.

    Google Scholar 

  73. Homey B, Alenius H, Muller A, Soto H, Bowman EP, Yuan W, et al.: CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 2002;2:157–165.

    Article  CAS  Google Scholar 

  74. Hudak S, Hagen M, Liu Y, Catron D, Oldham E, McEvoy LM, Bowman EP: Immune surveillance and effector functions of CCR10(+) skin homing T cells. J Immunol 2002;3:1189–1196.

    Google Scholar 

  75. Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC: CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med 2001;10:1541–1547.

    Article  Google Scholar 

  76. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, et al.: A new class of membrane-bound chemokine with a CX3C motif. Nature 1997;640–644.

  77. Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo JA, et al.: Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 1997;387:611–617.

    Article  PubMed  CAS  Google Scholar 

  78. Fong AM, Robinson LA, Steeber DA, Tedder TF, Yoshie O, Imai T, Patel DD: Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med 1998;188:1413–1419.

    Article  PubMed  CAS  Google Scholar 

  79. Papadopoulos EJ, Fitzhugh DJ, Tkaczyk C, Gilfillan AM, Sassetti C, Metcalfe DD, Hwang ST: Mast cells migrate, but do not degranulate, in response to fractalkine, a membrane-bound chemokine expressed constitutively in diverse cells of the skin. Euro J Immunol 2000;8:2355–2361.

    Article  Google Scholar 

  80. Papadopoulos EJ, Sassetti C, Saeki H, Yamada N, Kawamura T, Fitzhugh DJ, et al.: Fractalkine, a CX3C chemokine, is expressed by dendritic cells and is upregulated upon dendritic cell maturation. Euro J Immunol 1999;8:2551–2559.

    Article  Google Scholar 

  81. Foussat A, Coulomb-L Hermine A, Gosling J, Krzysiek R, Durand-Gasselin I, Schall T, et al.: Fractalkine receptor expression by T lymphocyte subpopulations and in vivo production of fractalkine in human. Euro J Immunol 2000;1:87–97.

    Article  Google Scholar 

  82. Lucas AD, Chadwick N, Warren BF, Jewell DP, Gordon S, Powrie F, Greaves DR: The transmembrane form of the CX3CL1 chemokine fractalkine is expressed predominantly by epithelial cells in vivo. Am J Pathol 2001;3:855–866.

    Google Scholar 

  83. Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, et al.: Identification and molecular characterization of fractalkine receptor CX 3CR1, which mediates both leukocyte migration and adhesion. Cell 1997;91:521–530.

    Article  PubMed  CAS  Google Scholar 

  84. Muehlhoefer A, Saubermann LJ, Gu X, Luedtke-Heckenkamp K, Xavier R, Blumberg RS, et al.: Fractalkine is an epithelial and endothelial cell-derived chemoattractant for intraepithelial lymphocytes in the small intestinal mucosa. J Immunol 2000;6:3368–3376.

    Google Scholar 

  85. Brandtzaeg P, Farstad IN, Haraldsen G: Regional specialization in the mucosal immune system: primed cells do not always home long the same track. Immunol Today 1999:20:267–277.

    Article  PubMed  CAS  Google Scholar 

  86. Svensson M, Marsal J, Ericsson A, Carramolino L, Broden T, Marquez G, Agace WW: CCL25 mediates the localization of recently activated CD8alphabeta(+) lymphocytes to the small-intestinal mucosa. J Clin Invest 2002;8:1113–1121.

    Article  CAS  Google Scholar 

  87. Kunkel EJ, Campbell JJ, Haraldsen G, Pan J, Boisvert J, Roberts AI, et al.: Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J Exp Med 2000;5:761–768.

    Article  Google Scholar 

  88. Papadakis KA, Prehn J, Nelson V, Cheng L, Binder SW, Ponath PD, et al.: The role of thymus-expressed chemokine and its receptor CCR9 on lymphocytes in the regional specialization of the mucosal immune system. J Immunol 2000;9:5069–5076.

    Google Scholar 

  89. Wurbel MA, Philippe JM, Nguyen C, Victorero G, Freeman T, Wooding P, et al.: The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. Euro J Immunol 2000;1:262–271.

    Article  Google Scholar 

  90. Papadakis KA, Landers C, Prehn J, Kouroumalis EA, Moreno ST, Gutierrez-Ramos JC, et al.: CC chemokine receptor 9 expression defines a subset of peripheral blood lymphocytes with mucosal T cell phenotype and Th1 or T-regulatory 1 cytokine profile. J Immunol 2003;1:159–165.

    Google Scholar 

  91. Zabel BA, Agace WW, Campbell JJ, Heath HM, Parent D, Roberts AI, et al.: Human G protein-coupled receptor GPR-9-G/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J Exp Med 1999;9:1241–1255.

    Article  Google Scholar 

  92. Olaussen RW, Farstad IN, Brandtzaeg P, Rugtveit J: Age-related changes in CCR9+ circulating lymphocytes: are CCR9+ naive T cells recent thymic emigrants? Scand J Immunol 2001;5:435–439.

    Article  Google Scholar 

  93. Wurbel MA, Malissen M, Guy-Grand D, Meffre E, Nussenzweig MC, Richelme M, et al.: Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor gammadelta(+) gut intraepithelial lymphocytes. Blood 2001;9:2626–2632.

    Article  Google Scholar 

  94. Uehara S, Grinberg A, Farber JM, Love PE: A role for CCR9 in T lymphocyte development and migration. J Immunol 2002;6:2811–2819.

    Google Scholar 

  95. Wang W, Soto H, Oldham ER, Buchanan ME, Homey B, Catron D, et al.: Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J Biol Chem 2000;29:22313–22323.

    Article  Google Scholar 

  96. Mickanin CS, Bhatia U, Labow M: Identification of a novel beta-chemokine, MEC, down-regulated in primary breast tumors. Int J Oncol 2001;5:939–944.

    Google Scholar 

  97. Kunkel EJ, Kim CH, Lazarus NH, Vierra MA, Soler D, Bowman EP, Butcher EC: CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J Clin Invest 2003;7:1001–1010.

    Article  CAS  Google Scholar 

  98. Kwon JH, Keates S, Bassani L, Mayer LF, Keates AC: Colonic epithelial cells are a major site of macrophage inflammatory protein 3alpha (MIP-3alpha) production in normal colon and inflammatory bowel disease. Gut 2002;6:818–826.

    Article  Google Scholar 

  99. Izadpanah A, Dwinell MB, Eckmann L, Varki NM, Kagnoff MF: Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. Am J Physiol Gastrointest Liver Physiol 2001;4:G710-G719.

    Google Scholar 

  100. Hieshima K, Imai T, Opdenakker G, Van Damme J, Kusuda J, Tei H, et al.: Molecular cloning of a novel human CC chemokine liver and activation-regulated chemokine (LARC) expressed in liver: chemotactic activity for lymphocytes and gene localization on chromosome. J Biol Chem 1997;272:5846–5853.

    Article  PubMed  CAS  Google Scholar 

  101. Power CA, Church DJ, Meyer A, Alouani S, Proudfoot AEI, Clark-Lewis I, Sozzani S, Mantovani A, Wells TNC: Cloning and characterization of a specific receptor for the novel CC chemokine MIP-3α from lung dendritic cells. J Exp Med 1997;186:825–835.

    Article  PubMed  CAS  Google Scholar 

  102. Tanaka Y, Imai T, Baba M, Ishikawa I, Uehira M, Nomiyama H, Yoshie O: Selective expression of liver and activation-regulated chemokine (LARC) in intestinal epithelium in mice and humans. Euro J Immunol 1999;29:633–642.

    Article  CAS  Google Scholar 

  103. Liao F, Rabin RL, Smith CS, Sharma G, Nutman TB, Farber JM: CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3α. J Immunol 1999;162:186–194.

    PubMed  CAS  Google Scholar 

  104. Cook DN, Prosser DM, Forster R, Zhang J, Kuklin NA, Abbondanzo SJ, et al.: CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 2000;5:495–503.

    Article  Google Scholar 

  105. Varona R, Villares R, Carramolino L, Goya I, Zaballos A, Gutierrez J, Torres M, Martinez A, Marquez G: CCR6-deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed-type hypersensitivity responses. J Clin Invest 2001;6:R37-R45.

    Google Scholar 

  106. Xu B, Wagner N, Pham LN, Magno V, Shan Z, Butcher EC, Michie SA: Lymphocyte homing to bronchus-associated lymphoid tissue (BALT) is mediated by L-selectin/PNAd, alpha4beta1 integrin/VCAM-1, and LFA-1 adhesion pathways. J Exp Med 2003;10:1255–1267.

    Article  CAS  Google Scholar 

  107. Picker LJ, Martin RJ, Trumble A, Newman LS, Collins PA, Bergstresser PR, Leung DY: Differential expression of lymphocyte homing receptors by human memory/effector T cells in pulmonary versus cutaneous immune effector sites. Euro J Immunol 1994;6:1269–1277.

    Article  Google Scholar 

  108. Campbell JJ, Brightling CE, Symon FA, Qin S, Murphy KE, Hodge M, et al.: Expression of chemokine receptors by lung T cells from normal and asthmatic subjects. J Immunol 2001;4:2842–2848.

    Google Scholar 

  109. Hormas R, Gray PW, Chantry D, Godiska R, Krathwohl M, Fife K, et al.: Cloning and characterization of exodus, a novel β-chemokine. Blood 1997;89:3315–3322.

    Google Scholar 

  110. Imai T, Yoshida T, Baba M Nishimura M, Kakizaki M, Yoshie O: Molecular cloning of a novel T cell-directed CC chemokine expressed in thymus by signal sequence trap using Epstein-Barr virus vector. J Biol Chem 1996;271:21514–21521.

    Article  PubMed  CAS  Google Scholar 

  111. Sekiya T, Miyamasu M, Imanishi M, Yamada H, Nakajima T, Yamaguchi M, et al.: Inducible expression of a Th2-type CC chemokine thymus- and activation-regulated chemokine by human bronchial epithelial cells. J Immunol 2000;4:2205–2213.

    Google Scholar 

  112. Schutyser E, Struyf S, Van Damme J: The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 2003;5:409–426.

    Article  CAS  Google Scholar 

  113. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, D'Ambrosio D: Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 2001;6:847–853.

    Article  Google Scholar 

  114. Iellem A, Colantonio L, D'Ambrosio D: Skin-versus gut-skewed homing receptor expression and intrinsic CCR4 expression on human peripheral blood CD4+CD25+ suppressor T cells. Euro J Immunol 2003;6:1488–1496.

    Article  CAS  Google Scholar 

  115. Annunziato F, Cosmi L, Liotta F, Lazzeri E, Manetti R, Vanini V, et al.: Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes. J Exp Med 2002;3:379–387.

    Article  CAS  Google Scholar 

  116. Agace WW, Amara A, Roberts AI, Pablos JL, Thelen S, Uguccioni M, et al.: Constitutive expression of stromal derived factor-1 by mucosal epithelia and its role in HIV transmission and propagation. Curr Biol 2000;6:325–328.

    Article  Google Scholar 

  117. Matloubian M, David A, Engel S, Ryan JE, Cyster JG: A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol 2000;4:298–304.

    Article  CAS  Google Scholar 

  118. Agace WW, Roberts AI, Wu L, Greineder C, Ebert EC, Parker CM: Human intestinal lamina propria and intraepithelial lymphocytes express receptors specific for chemokines induced by inflammation. Euro J Immunol 2000;3:819–826.

    Article  Google Scholar 

  119. Chang MS, McNinch J, Elias C, III, Manthey CL, Grosshans D, Meng T, et al.: Molecular cloning and functional characterization of a novel CC chemokine, stimulated T cell chemotactic protein (STCP-1) that specifically acts on activated T lymphocytes. J Biol Chem 1997;272:25229–25237.

    Article  PubMed  CAS  Google Scholar 

  120. Godiska R, Chantry D, Raport CJ, Sozzani S, Allavena P, Leviten D, et al.: Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J Exp Med 1997;185:1595–1604.

    Article  PubMed  CAS  Google Scholar 

  121. Vicari AP, Figueroa DJ, Hedrick JA, Foster JS, Singh KP, Menon S, et al.: TECK: A novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immunity 1997;7:291–301.

    Article  PubMed  CAS  Google Scholar 

  122. Panina-Bordignon P, Papi A, Mariani M, Di Lucia P, Casoni G, Bellettato C, Buonsanti C, Miotto D, Mapp C, Villa A, Arrigoni G, Fabbri LM, Sinigaglia F: The CC chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest 2001;11:1357–1364.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaerli, P., Moser, B. Chemokines. Immunol Res 31, 57–74 (2005). https://doi.org/10.1385/IR:31:1:57

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:31:1:57

Key Words

Navigation