Skip to main content
Log in

Tracking dendritic cells in vivo

Insights into DC biology and function

  • Immunology at Emory University
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Dendritic cells (DCs) play a vital role in the generation of immune responses, participating both in innate immunity as well as in the initiation of adaptive immunity. However, study of this rare cell population in vivo has been hampered by their low frequency as well as by inadequate means to track antigen-bearing DCs. Our laboratory has developed a novel strategy to genetically tag these DCs in the skin, and to monitor their migration from the periphery to the draining lymph nodes. These studies have provided new insights into the frequency of DC migration, the longevity of DCs in the lymphoid organs, as well as the ability of these DCs to function as antigen-presenting cells. Furthermore, the potential applications of this technique include the ability to evaluate DC function after silencing of specific genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinman RM, Adams JC, Cohn ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. IV. Identification and distribution in mouse spleen. J Exp Med 1975;141:804–820.

    PubMed  CAS  Google Scholar 

  2. Steinman RM, Cohn ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973;137:1142–1162.

    Article  PubMed  CAS  Google Scholar 

  3. Steinman RM, Cohn ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J Exp Med 1974;139:380–397.

    Article  PubMed  CAS  Google Scholar 

  4. Steinman RM, Lustig DS, Cohn ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. 3. Functional properties in vivo. J Exp Med 1974;139:1431–1445.

    Article  PubMed  CAS  Google Scholar 

  5. Shorlman K, Liu YJ: Mouse and human dendritic cell subtypes. Nat Rev Immunol 2002;2:151–161.

    Article  Google Scholar 

  6. Stingl G: Dendritic cells of the skin. Dennatol Clin 1990;8:673–679.

    CAS  Google Scholar 

  7. Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, et al.: Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 2000;12:71–81.

    Article  PubMed  CAS  Google Scholar 

  8. Borkowski TA, Letterio JJ, Farr AG, Udey MC: A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells. J Exp Med 1996;184:2417–2422.

    Article  PubMed  CAS  Google Scholar 

  9. Borkowski TA, Letterio JJ, Mackall CL, Saitoh A, Farr AG, Wang XJ, et al.: Langerhans cells in the TGF beta 1 null mouse. Adv Exp Med Biol. 1997;417:307–310.

    PubMed  CAS  Google Scholar 

  10. Salomon B, Cohen JL, Masurier C, Klatzmann D: Three populations of mouse lymph node dendritic cells with different origins and dynamics. J Immunol 1998;160:708–717.

    PubMed  CAS  Google Scholar 

  11. Henri S, Vremec D, Kamath AT, Waithman J, Williams S, Benoist C, et al.: The dendritic cell populations of mouse lymph nodes. J Immunol 2001;167:741–748.

    PubMed  CAS  Google Scholar 

  12. Sallusto F, Cella M, Danieli C, Lanzavecchia A: Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: down-regulation by cytokines and bacterial products. J Exp Med 1995;182:389–400.

    Article  PubMed  CAS  Google Scholar 

  13. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998;392:245–252.

    Article  PubMed  CAS  Google Scholar 

  14. Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA: Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 1998;282:480–483.

    Article  PubMed  CAS  Google Scholar 

  15. Cumberbatch M, Dearman RJ, Kimber I: Langerhans cells require signals from both tumour necrosis factor-alpha and interleukin-1 beta formigration. Immunology 1997;92:388–395.

    Article  PubMed  CAS  Google Scholar 

  16. Cumberbatch M, Kimber I: Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans' cell migration. Immunology 1992;75: 257–263.

    PubMed  CAS  Google Scholar 

  17. Wang BLZ, Fujisawa H: Enhanced epidermal Langerhans cell migration in IL-10 knockout mice. J Immunol 1999;162:277–283.

    PubMed  CAS  Google Scholar 

  18. Flores-Romo L: In vivo maturation and migration of dendritic cells. Immunology 2001;102:255–262.

    Article  PubMed  CAS  Google Scholar 

  19. Ngo VN HT, Cyster JG: Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J Exp Med 1998;188:181–191.

    Article  PubMed  CAS  Google Scholar 

  20. Steinman RM: The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991;9:271–296.

    Article  PubMed  CAS  Google Scholar 

  21. Kamath AT, Henri S, Battye F, Tough DF, Shortman K: Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 2002;100:1734–1741.

    PubMed  CAS  Google Scholar 

  22. Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, Weissman IL, et al.: Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 2002;3:1134–1141.

    Article  Google Scholar 

  23. Macatonia SE, Knight SC, Edwards AJ, Griffiths S, Fryer P: Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. J Exp Med 1987;166:1654–1667.

    Article  PubMed  CAS  Google Scholar 

  24. Ruedl C, Koebel P, Bachmann M, Hess M, Karjalainen K: Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes. J Immunol 2000; 165:4910–4916.

    PubMed  CAS  Google Scholar 

  25. Ruedl C, Koebel P, Karjalainen K: In vivo-matured Langerhans cells continue to take up and process native proteins unlike in vitro-matured co-unterparts. J Immunol 2001;166:7178–7182.

    PubMed  CAS  Google Scholar 

  26. Stoitzner P, Holzmann S, McLellan AD, Ivarsson L, Stossel H, Kapp M, et al.: Visualization and characterization of migratory Langerhans cells in murine skin and lymph nodes by antibodies against Langerin/CD207. J Invest Dermatol 2003;120:266–274.

    Article  PubMed  CAS  Google Scholar 

  27. Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN: Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after genegun immunization. J Exp Med 1998; 188:1075–1082.

    Article  PubMed  CAS  Google Scholar 

  28. Garg S, Oran A, Wajchman J, Sasaki S, Maris CH, Kapp JA, Jacob J: Genetic tagging shows increased frequency and longevity of antigen-presenting, skin-derived dendritic cells in vivo. Nat Immunol 2003;4:907–912.

    Article  PubMed  CAS  Google Scholar 

  29. Soriano P: Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999;21:70–71.

    Article  PubMed  CAS  Google Scholar 

  30. Zambrowicz BP, Imamoto A, Fiering S, Herzenberg LA, Kerr WG, Soriano P: Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to wide spread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci USA 1997;94:3789–3794.

    Article  PubMed  CAS  Google Scholar 

  31. Le Y, Sauer B: Conditional gene knockout using cre recombinase. Methods Mol Biol 2000;136:477–485.

    PubMed  CAS  Google Scholar 

  32. Nolan GP, Fiering S, Nicholas JF, Herzenberg LA: Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-D-galactosidase activity after transduction of Escherichia colilac Z. Proc Natl Acad Sci USA 1988;85:2603–2607.

    Article  PubMed  CAS  Google Scholar 

  33. Robinson HL: DNA vaccines: basic mechanism and immune responses (Review). Int J Mol Med 1999;4:549–555.

    PubMed  CAS  Google Scholar 

  34. Gurunathan S, Klinman DM, Seder RA: DNA vaccines: immunology, application, and optimization. Ann Rev Immunol 2000;18:927–974.

    Article  CAS  Google Scholar 

  35. Granucci F, Vizzardelli C, Pavelka N, Feau S, Persico M, Virzi E, et al.: Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol 2001;2:882–888.

    Article  PubMed  CAS  Google Scholar 

  36. Granhcci F, Vizzardelli C, Virzi E, Rescigno M, Ricciardi-Castagnoli P: Transcriptional reprogramming of dendritic cells by differentiation stimuli. Eur J Immunol 2001;31:2539–2546.

    Article  Google Scholar 

  37. Tuschl T: RNA interference and small interfering RNAs. Chembiochemistry 2001;2:239–245.

    Article  CAS  Google Scholar 

  38. McManus MT, Sharp PA: Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002;3:737–747.

    Article  PubMed  CAS  Google Scholar 

  39. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–811.

    Article  PubMed  CAS  Google Scholar 

  40. Hannon GJ: RNA interference. Nature 2002;418:244–251.

    Article  PubMed  CAS  Google Scholar 

  41. Elbashir S, Lendeckel W, Tuschl T: RNA interference is mediated by 21 and 22 nt RNAs. Genes Dev 2001; 15:188–200.

    Article  PubMed  CAS  Google Scholar 

  42. McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA: RNA interference in adult mice. Nature 2002;418:38–39.

    Article  PubMed  CAS  Google Scholar 

  43. Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H: Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 2002; 32:107–108.

    Article  PubMed  CAS  Google Scholar 

  44. Hasuwa H, Kaseda K, Einarsdottir T, Okabe M: Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 2002;532:227–230.

    Article  PubMed  CAS  Google Scholar 

  45. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, et al.: A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003;33:401–406.

    Article  PubMed  CAS  Google Scholar 

  46. Laderach D, Compagno D, Danos O, Vainchenker W, Galy A: RNA Interference shows critical requirement for NF-κB p50 in the production of IL-12 by human dendritic cells. J Immunol 2003;171:1750–1757.

    PubMed  CAS  Google Scholar 

  47. Hill JA, Ichim TE, Kusznieruk KP, Li M, Huang X, Yan X: Immune modulation by silencing IL-12 production in dendritic cells using small interfering RNA. J Immunol 2003;171:691–696.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hon, H., Jacob, J. Tracking dendritic cells in vivo. Immunol Res 29, 69–80 (2004). https://doi.org/10.1385/IR:29:1-3:069

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:29:1-3:069

Key Words

Navigation