Skip to main content
Log in

TGF-β

How tolerant can it be?

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

A balance between an adequate immune response to an antigen or pathogen and tolerance is a prerequisite for normal immune homeostasis and the well-being of the host. In this complex self-regulation multiple mechanisms have been implicated as contributing to the immune tolerance network, including apoptosis, anergy, and active suppression. Current excitement focuses on active suppression and new regulatory T cell-mediated pathways of immunosuppression that are being unraveled. Central to several of these pathways is transforming growth factor-β (TGF-β), a potent immunoregulatory cytokine that contributes to the function and generation of regulatory T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matzinger P: Tolerance, danger, and the extended family. Annu Rev Immunol 1994;12:991–1045.

    PubMed  CAS  Google Scholar 

  2. Langman RE, Cohn M: Self-nonself discrimination revisited. Introduction. Semin Immunol 2000;12:159–162.

    Article  PubMed  CAS  Google Scholar 

  3. Marrack P., Kappler J: Positive selection of thymocytes bearingalpha beta T cell receptors. Curr Opin Immunol 1997;9:250–255.

    Article  PubMed  CAS  Google Scholar 

  4. Abbas A, Murphy K, Sher A: Functional diversity of helper T lymphocytes. Nature 1996;383:787–793.

    Article  PubMed  CAS  Google Scholar 

  5. Schwartz RH: T cell anergy. Annu Rev Immunol. 2002;305–334.

  6. Sakaguchi S: Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000;101:455–458.

    Article  PubMed  CAS  Google Scholar 

  7. Gershon RK, Kondo K: Infectious immunological tolerance. Immunology 1971;21:903–914.

    PubMed  CAS  Google Scholar 

  8. Shevach EM: CD4+CD25+suppressor T cells: more questions than answers. Nat Rev Immunol 2002;2:389–400.

    PubMed  CAS  Google Scholar 

  9. Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, et al.: ACD4+T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997;389:737–742.

    Article  PubMed  CAS  Google Scholar 

  10. Weiner HL: The mucosalmilieu creates tolerogenic dendritic cells and T(R)1 and T(H)3 regulatory cells. Nat Immunol 2001;2:671–672.

    Article  PubMed  CAS  Google Scholar 

  11. Read S, Powrie F: CD4(+) regulatory T cells. Curr Opin Immunol 2001;13:644–649.

    Article  PubMed  CAS  Google Scholar 

  12. Doetze A, Satoguina J, Burchard G, Rau T, Loliger C, Fleischer B, et al.: Antigen-specific cellular hyporesponsiveness in a chronic human the lminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. Int Immunol 2000;12:623–630.

    Article  PubMed  CAS  Google Scholar 

  13. McGuirk P, McCann C, Mills KH: Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evation of protective T helper type 1 responses by Bordetella pertussis. J Exp Med 2002;195:221–231.

    Article  PubMed  CAS  Google Scholar 

  14. Akbari O, De Kruyff RH, Umetsu DT: Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2001;2:725–731.

    Article  PubMed  CAS  Google Scholar 

  15. Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP: Activation of human CD4(+) cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 2003;421:388–392.

    Article  PubMed  CAS  Google Scholar 

  16. Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL: Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994;265:1237–1240.

    Article  PubMed  CAS  Google Scholar 

  17. Fukara H, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL, Hafler DA: Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-β1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest 1996;98:70–77.

    Google Scholar 

  18. Chen W, Jin W, Cook M, Weiner HL, Wahl SM: Oral delivery of group A streptococcal cell walls augments circulating TGF-β and suppresses SCW arthritis. J Immunol 1998;161:6297–6304.

    PubMed  CAS  Google Scholar 

  19. Read S, Malmstrom V, Powrie F: Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000;192: 295–302.

    Article  PubMed  CAS  Google Scholar 

  20. Nakamura K, Kitani A, Strober W: Cell Contact-dependent Immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforminggrowth factor beta. J Exp Med 2001;194:629–644.

    Article  PubMed  CAS  Google Scholar 

  21. Chen W, Wahl SM: TGF-β, the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine & Growth Factors 2003;14:85–89.

    Article  CAS  Google Scholar 

  22. Croux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, et al.: A CD4+ T cell subset inhibits antigen-specific T cell responses and prevents colitis. Nature 1997;389:737–742.

    Article  CAS  Google Scholar 

  23. Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK: Type 1 T regulatory cells. Immunol Rev 2001;182:68–79.

    Article  PubMed  CAS  Google Scholar 

  24. Groux H: Anoverview of regulatory T cells. Microbes Infect 2001;3:883–889.

    Article  PubMed  CAS  Google Scholar 

  25. Kitani A, Chua K, Nakamura K, Strober W: Activated self-MHC-reactive T cells have the cytokine phenotype of Th3/T regulatory cell 1 T cells. J Immunol 2000;165:691–702.

    PubMed  CAS  Google Scholar 

  26. VanBuskirk AM, Burlingham WJ, Jankowska-Gan E, Chin T, Kusaka S, Geissler F, et al.: Human allograft acceptance is associated with immune regulation. J Clin Invest 2000;106:145–155.

    PubMed  CAS  Google Scholar 

  27. Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH: Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001;193:1285–1294.

    Article  PubMed  CAS  Google Scholar 

  28. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, et al.: Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001;61:4766–4772.

    PubMed  CAS  Google Scholar 

  29. Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL, et al.: Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 2002;168:4272–4276.

    PubMed  CAS  Google Scholar 

  30. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155:1151–1164.

    PubMed  CAS  Google Scholar 

  31. Thornton AM, Shevach EM: CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998;188:287–296.

    Article  PubMed  CAS  Google Scholar 

  32. Chen W, Sim D, Jin W, Kim E, Hardegen N, Bluestone JA, et al.: A functional link between CTLA-4 and cell surface associated TGF-β in CD4+CD25+ suppressor T cell-mediated immunosuppression. FASEB J 2002;16:A7636.

    Google Scholar 

  33. Annunziato F, Cosmi L, Liotta F, Lazzeri E, Manetti R, Vanini V, et al.: Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes. J Exp Med 2002;196:379–387.

    Article  PubMed  CAS  Google Scholar 

  34. Chatenoud L: CD3-specificantibody-induced active tolerance: from bench to bedside. Nat Rev Immunol 2003;3:123–132.

    Article  PubMed  CAS  Google Scholar 

  35. Cosimi AB, Colvin RB, Burton RC, Rubin RH, Goldstein G, Kung PC, et al.: Use of monoclonal antibodies to T-cell subsets for immunologic monitoring and treatment in recipients of renal allografts. N Engl J Med 1981;305:308–314.

    PubMed  CAS  Google Scholar 

  36. Herold KC, Burton JB, Francois F, Poumian-Ruiz E, Glandt M, Bluestone JA: Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3 gammal (Ala-Ala). J Clin Invest 2003;111:409–418.

    Article  PubMed  CAS  Google Scholar 

  37. Chen W, Jin W, Frank M, Wahl SM: Lethal effect of anti-CD3 antibody in mice lacking TGF-beta 1. FASEB J 2001;15:A1045.

    Google Scholar 

  38. Chen W, Wahl SM: TGF-beta: receptors, signaling pathways and autoimmunity. Curr Dir Autoimmun 2002;5: 62–91.

    PubMed  CAS  Google Scholar 

  39. Annes JP, Munger JS, Rifkin DB: Makingsense of latent TGF beta activation. J Cell Sci 2003;116:217–224.

    Article  PubMed  CAS  Google Scholar 

  40. Khalil N: TGF-beta: from latent to active. Microbes Infect 1999;1:1255–1263.

    Article  PubMed  CAS  Google Scholar 

  41. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, et al.: The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999;96: 319–328.

    Article  PubMed  CAS  Google Scholar 

  42. Rifkin DB, Gleizes PE, Harpel J, Numes I, Munger J, Mazzieri R, et al.: Plasminogen/plasminogen activator and growth factor activation. Ciba Found Symp 1997;212:105–115.

    PubMed  CAS  Google Scholar 

  43. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K: Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells 2002;7:1191–1204.

    Article  PubMed  CAS  Google Scholar 

  44. Massague J: TGF-β signal transduction. Annu. Rev. Biochem. 1998;67:753–791.

    Article  PubMed  CAS  Google Scholar 

  45. Roberts AB: TGF-beta signaling from receptors to the nucleus. Microbes Infect 1999;1:1265–1273.

    Article  PubMed  CAS  Google Scholar 

  46. Roberts AB: The ever-increasing complexity of TGF-beta signaling. Cytokine Growth Factor Rev 2002;13:3–5.

    Article  PubMed  CAS  Google Scholar 

  47. Ulloa L, Doody J, Massague J: Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 1999;397:710–713.

    Article  PubMed  CAS  Google Scholar 

  48. Bitzer M, von Gersdorff G, Liang D, Dominguez-Rosales A, Beg AA, Rojkind M, et al.: A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev 2000;14:187–197.

    PubMed  CAS  Google Scholar 

  49. Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R: Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A 2001;98:974–979.

    Article  PubMed  CAS  Google Scholar 

  50. Lin X, Liang M, Feng XH: Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 2000;275:36818–36822.

    Article  PubMed  CAS  Google Scholar 

  51. Sporn MB: TGF-beta: 20 years and counting. Microbes Infect 1999;1:1251–1253.

    Article  PubMed  CAS  Google Scholar 

  52. Wahl SM: Transforming growth factor: The good, the bad, and the ugly. J Exp. Med. 1994;180:1587–1590.

    Article  PubMed  CAS  Google Scholar 

  53. Massague J: How cells read TGF-beta signals. Nat Rev Mol Cell Biol 2000;1:169–178.

    Article  PubMed  CAS  Google Scholar 

  54. Blokzijl A, ten Dijke P, Ibanez CF: Physical and functional interaction between GATA-3 and Smad3 allows TGF-beta regulation of GATA target genes. Curr Biol 2002;12:35–45.

    Article  PubMed  CAS  Google Scholar 

  55. Gorelik L, Flavell RA: Transforming growth factor-beta in T-cell biology. Nature Rev Immunol 2002;2:46–53.

    Article  CAS  Google Scholar 

  56. Fuss IJ, Boirivant M, Lacy B, Strober W: The interrelated roles of TGF-beta and IL-10 in the regulation of experimental colitis. J Immunol 2002;168:900–908.

    PubMed  CAS  Google Scholar 

  57. Christ M, McCartney-Francis NL, Kulkami AB, Ward JM, Mizel DE, Mackall CL, et al.: Immune dysregulation in TGF-β1 deficient mice. J. Immunol. 1994;153: 1936–1946.

    PubMed  CAS  Google Scholar 

  58. McCartney-Francis NL, Mizel DE, Frazier-Jessen M, Kulkarni AB, McCarthy JB, Wahl SM: Lacrimal gland inflammation is responsible for ocular pathology in TGF-beta1 nullmice. Am J Pathol 1997;151:1281–1288.

    PubMed  CAS  Google Scholar 

  59. Seder RA, Paul WE: Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol 1994;12:635–673.

    Article  PubMed  CAS  Google Scholar 

  60. Shevach EM: Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med 2001;193:F41-F46.

    Article  PubMed  CAS  Google Scholar 

  61. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al.: Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000;192:303–310.

    Article  PubMed  CAS  Google Scholar 

  62. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, et al.: B//CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabeles. Immunity 2000;12:431–440.

    Article  PubMed  CAS  Google Scholar 

  63. Chen W, Jin W, Wahl SM: Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor beta (TGF-beta) production by murine CD4(+) T cells. J Exp Med 1998;188: 1849–1857.

    Article  PubMed  CAS  Google Scholar 

  64. Kato T, Nariuchi H: Polarization of naive CD4+T cells toward the Th1 subset by CTLA-4 costimulation. J Immunol 2000;164:3554–3562.

    PubMed  CAS  Google Scholar 

  65. Gomes NA, Gattass CR, Barreto-De-Souza V, Wilson ME, DosReis GA: TGF-beta mediates CTLA-4 suppression of cellular immunity in murine kalaazar. J Immunol 2000;164:2001–2008.

    PubMed  CAS  Google Scholar 

  66. Schneider H, Mandelbrot DA, Greenwald RJ, Ng F, Lechler R, Sharpe AH, et al.: Cutting Edge: CTLA-4 (CD 152) differentially regulates mitogen-activated protein kinases (extracellular signal-regulated kinase and c-jun N-terminal kinase) in CD4(+) T cells from receptor/ligand-deficient mice. J Immunol 2002;169: 3475–3479.

    PubMed  CAS  Google Scholar 

  67. Kadin M, Cavaille-Coll M, Gertz R, Massague J, Cheifetz S, George D: Loss of receptors for transforming growth factor beta in human T cell malignancies. Proc Natl Acad Sci USA 1994;91:6002–6006.

    Article  PubMed  CAS  Google Scholar 

  68. Krummel M, Allison J: CTLA4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996;183: 2533–2540.

    Article  PubMed  CAS  Google Scholar 

  69. Walunas T, Lenschow D, Bakker C, Linsley P, Freeman G, Green J, et al.: CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994;1:405–413.

    Article  PubMed  CAS  Google Scholar 

  70. Walunas T, Bakker C, Bluestone J: CTLA4 ligation blocks CD28-dependent T cell activation. J. Exp. Med. 1996;183:2541–2550.

    Article  PubMed  CAS  Google Scholar 

  71. Waterhouse P, Penninger J, Timms E, Wakeham A, Shahinian A, Lee K, et al.: Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 1995;270:985–988.

    Article  PubMed  CAS  Google Scholar 

  72. Tivol E, Borriello F, Schweitzer A, Lynch W, Bluestone J, Sharpe A: Loss of CTLA4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction. Immunity 1995;3:541–547.

    Article  PubMed  CAS  Google Scholar 

  73. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al.: Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 1992;359:693–699.

    Article  PubMed  CAS  Google Scholar 

  74. Kulkarni AB, Huh C-H, Becker D, Geiser A, Lyght M, Flanders KC, et al.: Transforming growth factor-β null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 1993;90:770–774.

    Article  PubMed  CAS  Google Scholar 

  75. Schneider H, Martin M, Agarraberes FA, Yin L, Rapoport I, Kirchhausen T, et al.: Cytolytic T lymphocyte-associated antigen-4 and the TCR zeta/CD3 complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J Immunol 1999;163:1868–1874.

    PubMed  CAS  Google Scholar 

  76. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S: Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002;3:135–142.

    Article  PubMed  CAS  Google Scholar 

  77. McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002;16:311–323.

    Article  PubMed  CAS  Google Scholar 

  78. Pasare C, Medzhitov R: Toll pathway-dependent blockade of CD4+CD25+T cell-mediated suppression by dendritic cells. Science 2003;299:1033–1036.

    Article  PubMed  CAS  Google Scholar 

  79. Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J: Regulatory T cells selectively express Toll-like receptors and are activated by lipopolysaccharide. J Exp Med 2003;197:403–411.

    Article  PubMed  CAS  Google Scholar 

  80. Stephens LA, Mason D: CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25− subpopulations. J Immunol 2000;165:3105–3110.

    PubMed  CAS  Google Scholar 

  81. Stephens LA, Mottet C, Mason D, Powrie F: Human CD4(+)CD25(+) thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur J Immunol 2001;31:1247–1254.

    Article  PubMed  CAS  Google Scholar 

  82. Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F, et al.: Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 1999;162: 5317–5326.

    PubMed  CAS  Google Scholar 

  83. Chen W, Jim W, Hardegen N, Lei K, Marinos N, McGrady G, wahl SM: Conversion of peripheral CD4+ CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp 3. J Exp Med 2003; in press.

  84. Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA: A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood J Immunol 2001;166:7282–7289.

    PubMed  CAS  Google Scholar 

  85. Levings MK, Sangregorio R, Sartirana C, Moschin AL, Battaglia M, Orban PC, et al.: Human CD25+ CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med 2002; 196:1335–1346.

    Article  PubMed  CAS  Google Scholar 

  86. Thorstenson KM, Khoruts A: Generation of anergic and potentially immunoregulatory CD25+CD4T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol 2001;167:188–195.

    PubMed  CAS  Google Scholar 

  87. Zhang X, Izikson L, Liu L, Weiner HL: Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration. J Immunol 2001;167:4245–4253.

    PubMed  CAS  Google Scholar 

  88. Chen W, Frank ME, Jin W, Wahl SM: TGF-beta released by apoptotic T cells contributes to an immunosuppresive milieu. Immunity 2001;14:715–725.

    Article  PubMed  CAS  Google Scholar 

  89. Lombardi G, Sidhu S, Batchelor R, Lechler R: Anergic T cells as suppressor cells in vitro. Science 1994;264: 1587–1589.

    Article  PubMed  CAS  Google Scholar 

  90. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM: Macrophages that have ingested apoptotic cells in vitro inhibit proin flammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998; 101:890–898.

    PubMed  CAS  Google Scholar 

  91. Gorelik L, Constant S, Flavell RA: Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med 2002;195:1499–1505.

    Article  PubMed  CAS  Google Scholar 

  92. Gorelik L, Flavell RA: Immune-mediated eradication of tumors through the blockade of transforming growth factorbeta signaling in T cells. Nat Med 2001;7:1118–1122.

    Article  PubMed  CAS  Google Scholar 

  93. Jonuleit H, Schmitt E, Kakirman H, Stassen M, Knop J, Enk AH: Infections tolerance: human CD25(+) regulatory T cells convey suppress or activity to conventional CD4(+) T helper cells. J Exp Med 2002;196: 255–260.

    Article  PubMed  CAS  Google Scholar 

  94. Dieckmann D, Bruett CH, Ploettner H, Lutz MB, Schuler G: Human CD4(+)CD25(+) regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells [corrected]. J Exp Med 2002;196:247–253.

    Article  PubMed  CAS  Google Scholar 

  95. Zelenika D, Adams E, Humm S, Lin CY, Waldmann H, Cobbold SP: The role of CD4+ T-cell subsets in determining transplantation rejection or tolerance. Immunol Rev 2001;182:164–179.

    Article  PubMed  CAS  Google Scholar 

  96. Taylor PA, Lees CJ, Blazar BR: The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 2002;99:3493–3499.

    Article  PubMed  CAS  Google Scholar 

  97. Song X, Gu M, Jin W, Klinman D, Wahl SM: Plasmid DNA encoding transforming growth factor-β1 suppresses chronic disease in a streptococcal cell wall-induced arthritis model. J Clin Invest 1998;101: 2615–2621.

    Article  PubMed  CAS  Google Scholar 

  98. Chen LZ, Hochwald GM, Huang C, Dakin G, Tao H, Cheng C, et al.: Gene therapy in allergic encephalomyelitis using myelin protein-specifc T cells engineered to express latent transforming growth factor-b1. Proc Natl Acad Sci USA 1998;95:12516–12521.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahl, S.M., Chen, W. TGF-β. Immunol Res 28, 167–179 (2003). https://doi.org/10.1385/IR:28:3:167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:28:3:167

Key Words

Navigation