Skip to main content

Advertisement

Log in

Signal transduction events regulating integrin function and T cell migration

New functions and complexity

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Integrin receptors facilitate T cell function by mediating adhesive events critical for T cell trafficking and recognition of foreign antigen, including interactions with vascular endothelium, extracellular matrix components, and antigen-presenting cells. Consequently, the functional activity of integrin receptors is acutely regulated by various intracellular signals delivered by other cell surface receptors, resulting in rapid changes in T cell adhesion and migration. This review highlights recent insights into our understanding of the signaling events by which the CD3/T cell receptor complex and chemokine receptors regulate integrin function and T cell migration. These studies highlight novel functions for several signaling molecules, including the tyrosine kinases Itk and ZAP-70, and the adapter protein SLAP-130/Fyb. In addition, analysis of the regulation of integrin function and chemokine-mediated migration has highlighted the critical role that spatial localization of signaling molecules plays in signal transduction, and the importance of the actin cytoskeleton in T cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jenkins MK, Khoruts A, Ingulli E, Mueller DL, McSorley SJ, Reinhardt RL, Itano A, Pape KA: In vivo activation of antigen-specific CD4 T cells. Annu Rev Immunol 2001; 19:23–45.

    PubMed  CAS  Google Scholar 

  2. Lanzavecchia A, Sallusto F: Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 2000;290:92–97.

    PubMed  CAS  Google Scholar 

  3. Springer TA: Traffic signals for lymphocyte recirculation and leukocyte emigration: the multislep paradigm. Cell 1994;76:301–314.

    PubMed  CAS  Google Scholar 

  4. Dustin ML, De Fougerolles AR: Reprograming T cells: the role of extracellular matrix in coordination of T cell activation and migration. Curr Opin Immunol 2001; 13:286–290.

    PubMed  CAS  Google Scholar 

  5. Dustin ML, Bromley SK, Kan ZY, Peterson DA, Unanue ER: Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc Natl Acad Sci USA 1997;94:3909–3913.

    PubMed  CAS  Google Scholar 

  6. Shimizu Y, Rose DM, Ginsberg MH: Integrins and the immune response. Adv Immunol 1999;72: 325–380.

    PubMed  CAS  Google Scholar 

  7. Shimizu Y, van Seventer GA, Horgan KJ, Shaw S: Regulated expression and binding of three VLA (β1) integrin receptors on T cells. Nature 1990;345:250–253.

    PubMed  CAS  Google Scholar 

  8. Sanders ME, Makgoba MW, Sharrow SO, et al.: Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three othermolecules (UCHL1, CDw29, and Pgp-1), and have enhanced IFN-γ production. J Immunol 1988;140:1401–1407.

    PubMed  CAS  Google Scholar 

  9. Dustin ML, Springer TA: T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 1989;341:619–624.

    PubMed  CAS  Google Scholar 

  10. van Kooyk Y, van de Wiel-van Kemanade P, Weder P, Kuijpers TW, Figdor CG: Entancement of LFA-1-mediated cell adhesion by triggering though CD2 or CD3 on T lymphocytes. Nature 1989;342:811–813.

    PubMed  Google Scholar 

  11. Shimizu Y, van Seventer GA, Ennis E, Newman W, Horgan KJ, Shaw S: Crosslinking of the T cellspecific accessory molecules CD7 and CD28 modulates T cell adhesion. J Exp Med 1992;175: 577–582.

    PubMed  CAS  Google Scholar 

  12. Stewart MP, McDowall A, Hogg N: LFA-1-mediated adhesion is regulated by cytoskeletal restraint and by a Ca2+-dependent protease, calpain. J Cell Biol 1998;140:699–707.

    PubMed  CAS  Google Scholar 

  13. Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC: Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 1998;279: 381–384.

    PubMed  CAS  Google Scholar 

  14. Carr MW, Alon R, Springer TA: The C-C chemokine MCP-1 differentially modulates the avidity of β1 and β2 integrins, on T lymphocytes. Immunity 1996;4:179–187.

    PubMed  CAS  Google Scholar 

  15. Constantin G, Majeed M, Giagulli C, Piccio L, Kim JY, Butcher EC, Laudanna C: Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 2000; 13:759–769.

    PubMed  CAS  Google Scholar 

  16. Shattil SJ, Kashiwagi H, Pampori N: Intergrin signaling: the platelet paradigm. Blood 1998;91: 2645–2657.

    PubMed  CAS  Google Scholar 

  17. Hogg N, Leitinger B: Shape and shift changes related to the function of leukocyte integrins LFA-1 and Mac-1. J Leukoc Biol 2001; 69:893–898.

    PubMed  CAS  Google Scholar 

  18. Dransfield I, Cabañas C, Craig A, Hogg N: Divalent cation regulation of the function of the leukocyte integrin LFA-1. J Cell Biol 1992;116:219–226.

    PubMed  CAS  Google Scholar 

  19. Bazzoni G, Hemler ME: Are changes in integrin affinity and conformation overemphasized. Trends Biochem Sci 1998;23:30–34.

    PubMed  CAS  Google Scholar 

  20. Shimaoka M, Lu CF, Palframan RT, Von Andrian UH, McCormack A, Takagi J, Springer TA: Reversibly locking a protein fold in an active conformation with a disulfide bond: integrin αL 1 domains with high affinity and antagonist activity in vivo. Proc Natl Acad Sci USA 2001;98:6009–6014.

    PubMed  CAS  Google Scholar 

  21. Lu CF, Shimaoka M, Zang Q, Takagi J, Springer TA: Locking in alternateconformations of the integrin αLβ21 domain with disulfide bonds reveals functional relationships among in tegrin domains. Proc Natl Acad Sci USA 2001; 98:2393–2398.

    PubMed  CAS  Google Scholar 

  22. van Kooyk Y, Figdor CG: Avidity regulation of integrins: the driving force in leukocyte adhesion. Curr Opin Cell Biol 2000;12:542–547.

    PubMed  Google Scholar 

  23. Kucik DF, Dustin ML, Miller, JM, Brown EJ: Adhesion@-activating phorhol ester incrases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J Clin Invest 1996;97:2139–2144.

    PubMed  CAS  Google Scholar 

  24. Kupfer A, Singer SJ: The specific interaction of helper T cells and antigen-presenting B cells. IV. Membrane and cytskeletal reorganizations in the bound T cell as a function of antigen dose. J Exp Med 1989;170:1697–1714.

    PubMed  CAS  Google Scholar 

  25. Otey CA, Pavalko FM, Burridge K: An interaction between α-actinin and the β-1 integrin subunit in vitro. J Cell Biol 1990;111:721–729.

    PubMed  CAS  Google Scholar 

  26. Sánchez-Mateos P, Campanero MR, Balboa MA, Sánchez-Madrid F: Co-clustering of β1 integrins, cytoskeletal proteins, and tyrosinephosphorylated substrates during integrin-mediated leukocyte aggregation. J Immunol 1993;151:3817–3828.

    PubMed  Google Scholar 

  27. Monks CRF, Freiberg BA, Kupfer H, Sciaky N, Kupfer A: Threedimensional segregation of supramolecular activation clusters in T cells. Nature 1998;395:82–86.

    PubMed  CAS  Google Scholar 

  28. Dustin ML, Cooper JA: The immunolgical synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 2000;1:23–29.

    PubMed  CAS  Google Scholar 

  29. Morley SCP, Bierer BE: The actin cytoskeleton, membrane lipid microdomains, and T cell signal transduction. Adv Immunol 2001; 77:1–43.

    PubMed  CAS  Google Scholar 

  30. Stewart MP, Cabañas C, Hogg N: T cell adhesion to intercellular adhesion molecule-1 (ICAM-1) is controlled by cell spreading and the activation of integrin LFA-1. J Immunol 1996;156:1810–1817.

    PubMed  CAS  Google Scholar 

  31. Kane LP, Lin J, Weiss A: Signal transduction by the TCR for antigen. Curr Opin Immunol 2000;12:242–249.

    PubMed  CAS  Google Scholar 

  32. Iwashima M, Irving BA, Van Oers NSC, Chan AC, Weiss A: Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 1994;263:1136–1139.

    PubMed  CAS  Google Scholar 

  33. Zhang WG, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE: LAT: The ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 1998; 92:83–92.

    PubMed  CAS  Google Scholar 

  34. Wardenburg JB, Fu C, Jackman JK, Flotow H, Wilkinson SE, Williams DH, Johnson R, Kong GH, Chan AC, Findell PR: Phosphorylation of SLP-76 by the ZAP-70 proteintyrosine kinase is required for T-cell receptor function. J Biol Chem 1996;271:19,641–19,644.

    CAS  Google Scholar 

  35. Raab M, Da Silva AJ, Findell PR, Rudd CE: Regulation of Vav-SLP-76 binding by ZAP-70 and its relevance to TCR L/CD3 induction of interleukin-2. Immunity 1997;6:155–164.

    PubMed  CAS  Google Scholar 

  36. Zhang WG, Trible RP, Zhu MH, Liu SK, McGlade J, Samelson LE: Association of Grb2 Gads, and phospholipase C-γl with phosphorylated LTA tyrosine residues—effect of LAT tyrosine mutations on T cell antigen receptor-mediated signaling. J Biol Chem 2000;275:23,355–23,361.

    CAS  Google Scholar 

  37. Liu SK, Fang N, Koretzky GA, McGlade CJ: The hematopoietic-specific adaptor protein Gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr Biol 1999;9: 67–75.

    PubMed  CAS  Google Scholar 

  38. Clements JL, Yang B, Ross-Barta SE, et al.: Requirement for the leukocyte-specific adapter protein SLP-76 for normal T-cell development. Science 1998;281: 416–419.

    PubMed  CAS  Google Scholar 

  39. Pivniouk V, Tsitsikov E, Swinton P, Rathbun G, Alt FW, Geha RS: Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell 1998;94:229–238.

    PubMed  CAS  Google Scholar 

  40. Zhang WG, Sommers CL, Burshtyn DN, et al.: Essential role of LAT in T cell development. Immunity 1999;10:323–332.

    PubMed  CAS  Google Scholar 

  41. Lewis CM, Broussard C, Czar MJ, Schwartzberg PL: Tec kinases: modulators of lymphocyte signaling and development. Curr Opin Immunol 2001;13:317–325.

    PubMed  CAS  Google Scholar 

  42. August A, Sadra A, Dupont B, Hanafusa H: Src-induced activation of inducible T cell kinase (ITK) requires phosphatidy linositol 3-kinase activity and the pleckstrin homology domain of inducible T cell kinase. Proc Natl Acad Sci USA 1997;94: 11,227–11,232.

    CAS  Google Scholar 

  43. Heyeck SD, Wilcox HM, Bunnell SC, Berg LJ: Leck phosphorylates the activation loop tyrosines of the Itk kinase domain and activates Itk kinase activity. J Biol Chem 1997; 272:25,401–25,408.

    CAS  Google Scholar 

  44. Perez-Villar JJ, Kamer SB: Regulated association between the tyrosine kinase Emt/Itk/Tsk and phospholipase-Cγl in human T lymphocytes. J Immunol 1999; 163:6435–6441.

    PubMed  CAS  Google Scholar 

  45. Liu KQ, Bunnell SC, Gurniak CB, Berg LJ: T cell receptor-initiated calcium release is uncoupled from capacitative calcium entry in 1tk-deficient T cells. J Exp Med 1998; 187:1721–1727.

    PubMed  CAS  Google Scholar 

  46. Schaeffer EM, Debnath J, Yap G, et al.: Requirement for Tec kinases R1k and Itk in T cell receptor signaling and immunity. Science 1999;284:638–641.

    PubMed  CAS  Google Scholar 

  47. Fluckiger AC, Li ZM, Kato RM, et al.: Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J 1998;17: 1973–1985.

    PubMed  CAS  Google Scholar 

  48. Bunnell SC, Diehn M, Yaffe MB, Findell PR, Cantley LC, Berg LJ: Biochemical interactions integrating Itk with the T cell receptorinitiated signaling cascade. J Biol Chem 2000;275:2219–2230.

    PubMed  CAS  Google Scholar 

  49. Su YW, Zhang Y, Schweikert J, Koretzky GA, Reth M, Wienands J: Interaction of SLP adaptors with the SH2 domain of Tec family kinases. Eur J Immunol 1999;29: 3702–3711.

    PubMed  CAS  Google Scholar 

  50. Satterthwaite AB, Li Z, Witte ON: Btk function in B cell development and response. Semin Immunol 1998;10:309–316.

    PubMed  CAS  Google Scholar 

  51. Fowell DJ, Shinkai K, Liao XC, et al.: Impaired NFATc translocation and failure of Th2 development in Itk-deficient CD4+T cells. Immunity 1999;11:399–409.

    PubMed  CAS  Google Scholar 

  52. Woods ML, Cabañas C, Shimizu Y: Activation-dependent changes in soluble fibronectins binding and expression of β1 integrin activation epitopes in T cells: relationship to T cell adhesion and migration. Eur J Immunol 2000;30: 38–49.

    PubMed  CAS  Google Scholar 

  53. Shimizu Y, Hunt SW, III: Regulating integrin-mediated adhesion: one more function for P13-kinase? Immunol Today 1996;17:565–573.

    PubMed  CAS  Google Scholar 

  54. Woods ML, Kivens WJ, Adelsman MA, Qiu Y, August A, Shimizu Y: A novel function for the Tec family tyrosine kinase Itk in activations of β1 integrins by the T cell receptor. EMBO J 2001;20:1232–1244.

    PubMed  CAS  Google Scholar 

  55. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000;1:31–39.

    PubMed  CAS  Google Scholar 

  56. Viola A: The amplification of TCR signaling by dynamic membrane microdomains. Trends Immunol 2001;22:322–327.

    PubMed  CAS  Google Scholar 

  57. Zhang WG, Trible RP, Samelson LE: LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 1998;9:239–246.

    PubMed  CAS  Google Scholar 

  58. Bi K, Tanaka Y, Coudronniere N, et al.: Antigen-induced translocation of PKC-θ to membrane rafts is required for T cell activation. Nat Immunol 2001;2:556–563.

    PubMed  CAS  Google Scholar 

  59. Janes PW, Ley SC, Magee AI: Aggregation of lipid rafts accompanies signaling via the T cell receptor. J Cell Biol 1999;147: 447–461.

    PubMed  CAS  Google Scholar 

  60. Krauss K, Altevogt P: Integrin leukocyte function-associated antigen-1-mediated cell binding can be activated by clustering of membrane rafts. J Biol Chem 1999;274:36,921–36,927.

    CAS  Google Scholar 

  61. Cantrell DA: Phosphoinositide 3-kinase signalling pathways. J Cell Sci 2001;114:1439–1445.

    PubMed  CAS  Google Scholar 

  62. De Aós I, Metzger MH, Exley M, et al.: Tyrosine phosphorylation of the CD3-e subunit of the T cell antigen receptor mediates enhanced association with phosphatidylinositol 3-kinase in Jurkat T cells. J Biol Chem 1997;272: 25,310–25,318.

    Google Scholar 

  63. Beitz LO, Fruman DA, Kurosaki T, Cantley LC, Scharenberg AM: SYK is upstream of phosphoinositide 3-kinase in B cell receptor signaling. J Biol Chem 1999;274:32,662–32,666.

    CAS  Google Scholar 

  64. Pogue SL, Kurosaki T, Bolen J, Herbst R: B cell antigen receptorinduced activation of Akt promotes B cell survival and is dependent on Syk kinase. J Immunol 2000;165:1300–1306.

    PubMed  CAS  Google Scholar 

  65. Williams BL, Schreiber KL, Zhang WG, et al.: Genetic evidence for differential coupling of Syk family kinases to the T-cell receptor: reconstitution studies in a ZAP-70-deficient Jurkat T-cell line. Mol Cell Biol 1998;18:1388–1399.

    PubMed  CAS  Google Scholar 

  66. Epler JA, Liu R, Chung H, Ottoson NC, Shimizu Y: Regulation of β1 integrin-mediated adhesion by T cell receptor signaling involves ZAP-70 but differs from signaling events that regulated transcriptional activity. J Immunol 2000;165: 4941–4949.

    PubMed  CAS  Google Scholar 

  67. Shan XC, Wange RL: Itk/Emt/Tsk activation in response to CD3 cross-linking in Jurkat T cells requires ZAP-70 and Lat and is independent of membrane recruitment. J Biol Chem 1999;274: 29,323–29,330.

    CAS  Google Scholar 

  68. Shan XC, Czar MJ, Bunnell SC, et al.: Deficiency of PTEN in Jurkat T cells causes constitutive localization of 1tk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol Cell Biol 2000;20:6945–6957.

    PubMed  CAS  Google Scholar 

  69. Wang XD, Gjörloff-Wingren A, Saxena M, Pathan N, Reed JC, Mustelin T.: The tumor suppressor PTEN regulates T cell survival and antigen receptor signaling by acting as a phosphatidy linositol 3-phosphatase. J Immunol 2000; 164:1934–1939.

    PubMed  CAS  Google Scholar 

  70. Fang N, Motto DG, Rose SE, Koretzky GA: Tyrosines 113, 128, and 145 of SLP-76are required for optimal augmentation of NFAT promoter activity. J Immunol 1996;157:3769–3773.

    PubMed  CAS  Google Scholar 

  71. Boerth NJ, Sadler JJ, Bauer DE, Clements JL, Gheith SM, Koretzky GA. Recruitment of SLP-76 to the membrane and glycolipid-enriched membrane microdomains replaces the requirement for linker for activation of T cells in T cell receptor signaling. J Exp Med 2000;192:1047–1058.

    PubMed  CAS  Google Scholar 

  72. Yablonski D, Kuhne MR, Kadlecek T, Weiss A: Uncoupling of nonreceptor tyrosine kinases from PCL-γl in an SLP-76-deficient T cell. Science 1998;281:413–416.

    PubMed  CAS  Google Scholar 

  73. Williams BL, Irvin BJ, Sutor SL, et al.: Phosphorylation of Tyr319 in ZAP-70 is required for T-cell antigen receptor-dependent phospholipase C-γl and Rasactivation. EMBO J 1999;18:1832–1844.

    PubMed  CAS  Google Scholar 

  74. Ching KA, Grasis JA, Tailor P, Kawakami Y, Kawakami T, Tsoukas CD: TCR/CD3-induced activation and binding of Emt/Itk to linker of activated T cell complexes: requirement for the Src homology 2 domain. J Immunol 2000;165:256–262.

    PubMed  CAS  Google Scholar 

  75. Ku GM, Yablonski D, Manser E, Lim L, Weiss A: APAK 1-P1X-PKL complex is activated by the T-cell receptor independent of Nck, Slp-76 and LAT. EMBO J 2001;20:457–465.

    PubMed  CAS  Google Scholar 

  76. Tsoukas CD, Grasis JA, Keith A, Ching, Kawakami Y, Kawakami T: Itk/Emt: a link between T cell antigen receptor-mediated Ca2+ events and cytoskeletal reorganization. Trends Immunol 2001;22: 17–20.

    PubMed  CAS  Google Scholar 

  77. Roulier EM, Panzer S, Beckendorf SK: The Tec29 tyrosine kinase is required during Drosophila embryogenesis and interacts with Src64 in ring canal development. Mol Cell 1998;1:819–829.

    PubMed  CAS  Google Scholar 

  78. Yao LB, Janmey P, Frigeri LG, et al.: Pleckstrin homology domains interact with filamentous actin. J Biol Chem 1999;274: 19,752–19,761.

    CAS  Google Scholar 

  79. Bunnell SC, Henry PA, Kolluri R, Kirchhausen T, Rickles RJ, Berg LJ: Identification of Itk/Tsk Src homology 3 domain ligands. J Biol Chem 1996;271:25,646–25,656.

    CAS  Google Scholar 

  80. Baba Y, Nonoyama S, Matsushita M, et al.: Involvement of Wiskott-Aldrich syndrome protein in B-cell cytoplasmic tyrosine kinase pathway. Blood 1999;93:2003–2012.

    PubMed  CAS  Google Scholar 

  81. Nore BF, Vargas L, Mohamed AJ, et al.: Redistribution of Bruton's tyrosine kinase by activation of phosphatidylinositol 3-kinase and Rho-family GTPases. Eur J Immunol 2000;30:145–154.

    PubMed  CAS  Google Scholar 

  82. Hall A: Rbo GTPases and the actin cytoskeleton. Science 1998;279:509–514.

    PubMed  CAS  Google Scholar 

  83. Zhang ZH, Vuori K, Wang HG, Reed JC, Ruoslahti E: Intergrin activation by R-ras. Cell 1996; 85:61–69.

    PubMed  CAS  Google Scholar 

  84. D'Souza-Schorey C, Boettner B, Van Aelst L: Rac regulates integrin-mediated spreading and increased adhesion of T lymphocytes. Mol Cell Biol 1998;18:3936–3946.

    PubMed  Google Scholar 

  85. Caron E, Self AJ, Hall A: The GTPase Rapl controls functional activation of macrophage integrin αMβ2 by LPS and other inflammatory mediators. Curr Biol 2000; 10:974–978.

    PubMed  CAS  Google Scholar 

  86. Katagiri K, Hattori M, Minato N, Irie S, Takatsu K, Kinashi T: Rapl is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidy linositol-3-OH kinase. Mol Cell Biol 2000; 20:1956–1969.

    PubMed  CAS  Google Scholar 

  87. Tanaka Y, Minami Y, Mine S, et al.: H-ras signals to cytoskeletal machinery in induction of integrinmediated adhesion of T cells. J Immunol 1999;163:6209–6216.

    PubMed  CAS  Google Scholar 

  88. O'Rourke AM, Shao H, Kaye J: Cutting edge: a role for p21tas/MAP kinase in TCR-mediated activation of LFA-1. J Immunol 1998;161: 5800–5803.

    PubMed  Google Scholar 

  89. Kinashi T, Asaoka T, Setoguchi R, Takatsu K: Affinity modulation of very late antigen-5 through phosphatidy linositol 3-kinase in mast cells. J Immunol 1999;162: 2850–2857.

    PubMed  CAS  Google Scholar 

  90. Faull RJ, Kovach NL, Harlan JM, Ginsberg MH: Stimulation of integrin-mediated adhesion of T lymphocytes and monocytes: two mechanisms with divergent biological consequences. J Exp Med 1994;179:1307–1316.

    PubMed  CAS  Google Scholar 

  91. Patarroyo M, Beatty PG, Fabre JW, Gahmberg CG: Identification of a cell surface protein complex mediating phorbol ester-induced adhesion (binding) among human mononuclear leukocytes. Scand J Immunol 1985;22:171–182.

    PubMed  CAS  Google Scholar 

  92. Mobley JL, Ennis E, Shimizu Y: Differential activation-dependent regulation of integrin function in cultured human T-leukemic cell lines. Blood 1994;83:1039–1050.

    PubMed  CAS  Google Scholar 

  93. Monks CRF, Kupfer H, Tamir I, Barlow A, Kupfer A: Selective modulation of protein kinase C-θ during T-cell activation. Nature 1997;385:83–86.

    PubMed  CAS  Google Scholar 

  94. Sun Z, Arendt CW, Ellimeier W, et al.: PKC-θ is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature 2000;404: 402–407.

    PubMed  CAS  Google Scholar 

  95. Villalba M, Coudronniere N, Deckert M, Teixeiro E, Mas P, Altman A: A novel functional interaction between Vav and PKCθ is required for TCR-induced T cell activation. Immunity 2000;12: 151–160.

    PubMed  CAS  Google Scholar 

  96. Kawakami Y, Kitaura J, Hartman SE, Lowell CA, Siraganian RP, Kawakami T: Regulation of protein kinase Cβ1 by two protein-tyrosine kinases, Btk and Syk. Proc Natl Acad Sci USA 2000;97: 7423–7428.

    PubMed  CAS  Google Scholar 

  97. Kinashi T, Springer TA: Regulation of cell-matrix adhesion by receptor tyrosine kinases. Leuk Lymphoma 1995;18:203–208.

    PubMed  CAS  Google Scholar 

  98. Adelsman MA, McCarthy JB, Shimizu Y: Stimulation of β 1 integrinfunction by epidermal growth factor and heregulin-β has distinct requirements for erb B: 2 but a similar dependence on phosphoinosi tide 3-OH kinase. Mol Biol Cell 1999;10:2861–2878.

    PubMed  CAS  Google Scholar 

  99. Kivens WJ, Hunt SW, III, Mobley JL, Zell T, Dell CL, Bierer BE, Shimizu Y: Identification of a proline-rich sequence in the CD2 cytoplasmic domain critical for regulation of integrin-mediated adhesion and activation of phosphoinositide 3-kinase. Mol Cell Biol 1998;18:5291–5307.

    PubMed  CAS  Google Scholar 

  100. Zell T, Hunt SW, III, Finkelstein LD, Shimizu Y: CD 28-mediated upregulation of β1 integrinmediated adhesion involves phosphatidy linositol 3-kinase. J Immunol 1996;156:883–886.

    PubMed  CAS  Google Scholar 

  101. Chan ASH, Mobley JL, Fields GB, Shimizu Y: CD7-mediated regulation of integrin adhesiveness on human T cells involves tyrosine phosphorylation-dependent activation of phosphatidylinositol 3-kinase. J Immunol 1997;159: 934–942.

    PubMed  CAS  Google Scholar 

  102. Nagel W, Zeitlmann L, Schilcher P, Geiger C, Kolanus J, Kolanus W: Phosphoinositide 3-OH kinase activates the β2 integrin adhesion pathway and induces membrane recruitment of cytohesin-1. J Biol Chem 1998;273:14,853–14,861.

    CAS  Google Scholar 

  103. Donnadieu E, Lang V, Bismuth G, Ellmeier W, Acuto O, Michel F, Trautmann A: Differential roles of Lek and Itk in T cell response to antigen recognition revealed by calcium imaging and electron microscopy. J Immunol 2001; 166: 5540–5549.

    PubMed  CAS  Google Scholar 

  104. Ashida N, Arai H, Yamasaki M, Kita T. Distinct signaling pathways for MCP-1-dependent integrin activation and chemotaxis. J Biol Chem 2001;276: 16,555–16,560.

    CAS  Google Scholar 

  105. Musci MA, Hendricks-Taylor LR, Motto DG, et al.: Molecular cloning of SLAP-130, an SLP-76-associated substrate of the T cell antigen receptor-stimulated protein tyrosine kinases. J Biol Chem 1997;272:11,674–11,677.

    CAS  Google Scholar 

  106. Da Silva AJ, Li ZW, De Vera C, Canto E, Findell P, Rudd CE: Cloning of a novel T-cell protein FYB that binds FYN and SH2-domain-containing leukocyte protein 76 and modulates interleukin 2 production. Proc Natl Acad Sci USA 1997;94:7493–7498.

    PubMed  CAS  Google Scholar 

  107. Boerth NJ, Judd BA, Koretzky GA: Functional association between SLAP-130 and SLP-76 in Jurkat T cells. J Biol Chem 2000; 275: 5143–5152.

    PubMed  CAS  Google Scholar 

  108. Raab M, Kang H, Da Silva A, Zhu XC, Rudd CE. FYN-T-FYB-SLP-76 interactions de finea T-cell receptor ·/CD 3-mediated tyrosine phosphorylation pathway that up-regulates interleukin 2 transcription in T-cells. J Biol Chem 1999;274:21,170–21,179.

    CAS  Google Scholar 

  109. Hunter AJ, Ottoson NC, Boerth N, Koretzky GA, Shimizu Y: Cutting edge: a novel function for the SLAP-130/FYB adapterprotein in β1 integrin signaling and T lymphocyte migration. J Immunol 2000;164:1143–1147.

    PubMed  CAS  Google Scholar 

  110. Krause M, Sechi AS, Konradt M, Monner D, Gertler FB, Wehland J: Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J Cell Biol 2000;149:181–194.

    PubMed  CAS  Google Scholar 

  111. Reinhard M, Jarchau T, Walter U: Actin-based motility: stop and go with Ena/VASP proteins. Trends Biochem Sci. 2001;26:243–249.

    PubMed  CAS  Google Scholar 

  112. Peterson EJ, Woods ML, Dmowski SA, et al.: SLAP-130/Fyb couples the TCR to integrin activation. Science 2001; In press.

  113. Griffiths EK, Krawczyk C, Kong Y-Y, et al.; Positive regulation of T cell activation and integrin adhesion by the adapter Fy b/Slap. Science 2001; In press.

  114. Hauser W, Knobeloch KP, Eigenthaler M, et al.: Megakaryocyte hyperplasia and enhan cedagonistinduced platelet activation in vasodilator-stimulated phosphoprotein knockout mice. Proc Natl Acad Sci USA 1999;96: 8120–8125.

    PubMed  CAS  Google Scholar 

  115. Grakoui A, Bromley SK, Sumen C, et al.: The immunological synapse: a molecular machine controlling T cell activation. Science 1999;285:221–227.

    PubMed  CAS  Google Scholar 

  116. Schmits R, Kündig TM, Baker DM, et al.: LFA-1-deficient mice show normal CTL responses to virusbut failto reject immunogenic tumor. J Exp Med 1996; 183: 1415–1426.

    PubMed  CAS  Google Scholar 

  117. Berlin-Rufenach C, Otto F, Mathies M, et al.: Lymphocyte migration in lymphocyte function-associated antigen (LFA)-1-deficient mice. J Exp Med 1999; 189:1467–1478.

    PubMed  CAS  Google Scholar 

  118. Mellado M, Rodriguez-Frade JM, Manes S, Martinez-A C: Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 2000; 19:397–421.

    Google Scholar 

  119. Moser B, Loetscher P: Lymphocyte trafficcontrolby chemokines. Nat Immunol 2001;2:123–128.

    PubMed  CAS  Google Scholar 

  120. Ma Q, Jones D, Springer TA: The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow micronen vironment. Immunity 1999;10: 463–471.

    PubMed  CAS  Google Scholar 

  121. Grabovsky V, Feigelson S, Chen C, et al.: Subsecond induction of α 4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J Exp Med 2000;192:495–505.

    PubMed  CAS  Google Scholar 

  122. Müller A, Homey B, Soto H., et al.: Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410:50–56.

    PubMed  Google Scholar 

  123. Gerard C, Rollins BJ: Chemokines and disease. Nat Immunol 2001;2:108–115.

    PubMed  CAS  Google Scholar 

  124. Cary LA, Han DC, Polte TR, Hanks SK, Guan JL:Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. J Cell Biol 1998;140: 211–221.

    PubMed  CAS  Google Scholar 

  125. Cary LA, Chang JF, Guan JL: Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J Cell Sci 1996;109: 1787–1794.

    PubMed  CAS  Google Scholar 

  126. Reiske HR, Kao SC, Cary, LA, Guan JL, Lai JF, Chen HC: Requirement of phosphatidy linositol 3-kinase in focal adhesion kinase-promoted cell migration. J Biol Chem 1999;274: 12,361–12,366.

    CAS  Google Scholar 

  127. Sieg DJ, Illic D, Jones KC, Damsky CH, Hunter T, Schlaepfer DD: Pyk 2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectinstimulated signaling events but Pyk2 does not fully function to enhance FAK-cell migration. EMBO J 1998;17:5933–5947.

    PubMed  CAS  Google Scholar 

  128. Zhang XF, Wang JF, Matzak E, Proper J, Groopman JE: Janus kinase 2 is involve dinstromal cellderived factor-1-α-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells. Blood 2001;97:3342–3348.

    PubMed  CAS  Google Scholar 

  129. Ottoson NC, Pribila JT, Chan ASH, Shimizu Y: Cutting edge: T cell migration regulated by CXCR4 chemokine receptor signaling to ZAP-70 tyrosine kinase. J Immunol 2001;167:1857–1861.

    PubMed  CAS  Google Scholar 

  130. Kim CH, Qu CK, Hangoc G, Cooper S, Anzai N, Feng GS, Broxmeyer HE: Abnormal chemokineinduced responsesof immature and mature hematopoietic cells from motheaten mice implicate the protein tyrosine phosphatase SHP-1 in chemokine responses. J Exp Med 1999; 190:681–690.

    PubMed  CAS  Google Scholar 

  131. Qi JH, Ito N, Claesson-Welsh L: Tyrosine phosphatase SHP-2 is involved inregulation of platelet-derived growth factor-induced migration. J Biol Chem 1999; 274: 14,455–14,463.

    CAS  Google Scholar 

  132. Chernock RD, Cherla RP, Ganju RK: SHP2 and cbl participate in α-chemokine receptor CXCR4-mediated signaling pathways. Blood 2001;97:608–615.

    PubMed  CAS  Google Scholar 

  133. Vicente-Manzanares M, Rey M, Jones DR, et al: Involvement of phosphatidylinositol 3-kinase in stromal cell-derived factor-1 α-induced lymphocyte polarization and chemotaxis. J Immunol 1999; 163:4001–4012.

    PubMed  CAS  Google Scholar 

  134. Wang JF, Park IW, Groopman JE: Stromal cell-derived factor-1α stimulates tyrosine phosphorylation of multiple focaladhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. Blood 2000; 95:2505–2513.

    PubMed  CAS  Google Scholar 

  135. Sasaki T, Irie-Sasaki J, Jones RG, et al: Function of PI3K γ in thymocyte development, T cell activation, and neutrophil migration. Science 2000;287:1040–1046.

    PubMed  CAS  Google Scholar 

  136. Hirsch E, Katanaev VL, Garlanda C, et al.: Central role for G proteincoupled phosphoinositide 3-kinase γ in inflammation. Science 2000; 287:1049–1053.

    PubMed  CAS  Google Scholar 

  137. Klemke RL, Leng J, Molander R, Brooks PC, Vuori K, Cheresh DA: CAS/Crk coupling serves as a “molecular switch” for induction of cell migration. J Cell Biol 1998;140:961–972.

    PubMed  CAS  Google Scholar 

  138. Haddad E, Zugaza JL, Louache F, et al.: The interaction between Cdc42 and WASP is required for SDF-1-induced T-lymphocyte chemotaxis. Blood 2001;97: 33–38.

    PubMed  CAS  Google Scholar 

  139. Cherla RP, Ganju RK: Stromal cell-derived factor 1α-induced chemotaxis in T cells is mediated by nitric oxide signaling pathways. J Immunol 2001;166:3067–3074.

    PubMed  CAS  Google Scholar 

  140. Ganju RK, Brubaker SA, Meyer J, et al.: The alpha-chemokine, stromal cell-derived factor-1α, binds to the transmembrane G-proteincoupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem 1998;273:23,169–23,175.

    CAS  Google Scholar 

  141. Benard V, Bohl BP, Bokoch GM: Characterization of Racand C dc 42 activation in chemoattrac tantstimulated human neutrophils using a novel assay for active GTPases. J Biol Chem 1999;274: 13,198–13,204.

    CAS  Google Scholar 

  142. Akasaki T, Koga H, Sumimoto H: Phosphoinositide 3-kinasedependent and-independent activation of the small GTPase Rac 2 in human neutrophils. J Biol Chem 1999;274:18,055–18,059.

    CAS  Google Scholar 

  143. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW: The interaction between N-WASP and the Arp2/3 complex links Cdc 42-dependent signals to actin assembly. Cell 1999;97: 221–231.

    PubMed  CAS  Google Scholar 

  144. Sánchez-Madrid F, Del Pozo MA: Leukocyte polarization in cell migration and immune interactions. EMBO J 1999;18:501–511.

    PubMed  Google Scholar 

  145. Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN: G protein signaling events are activated at the leading edge of chemotactic cells. Cell 1998; 95: 81–91.

    PubMed  CAS  Google Scholar 

  146. Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR: Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 2000;287:1037–1040.

    PubMed  CAS  Google Scholar 

  147. Del Pozo MA, Sánchez-Mateos P, Nieto M, Sánchez-Madrid F: Chemokines regulate cellular polarization and dadhesion receptor redistribution during lymphocyte interaction with endothelium and extracellular matrix. Involvement of cAMP signaling pathway. J Cell Biol 1995;131: 495–508.

    PubMed  Google Scholar 

  148. Vila-Coro AJ, Rodriguez-Frade JM, De Ana AM, Moreno-Ortíz MC, Martínez C, Mellado M: The chemokine SDF-1α triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway FASEB J 1999;13:1699–1710.

    PubMed  CAS  Google Scholar 

  149. Wong M, Uddin S, Majchrzak B, et al.: RANTES activates Jak2 and Jak3 to regulate engagement of multiple signaling pathways in T cells. J Biol Chem 2001;276: 11,427–11,431.

    CAS  Google Scholar 

  150. Mellado M, Rodriguez-Frade JM, Aragay A, et al: The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J Immunol 1998;161:805–813.

    PubMed  CAS  Google Scholar 

  151. Wong M, Fish EN: RANTES and MIP-1α activate stats in T cells. J Biol Chem 1998;273:309–314.

    PubMed  CAS  Google Scholar 

  152. Rodríguez-Frade JM, Vila-Coro AJ, Martin A, et al.: Similarities and differences in RANTES- and (AOP)-RANTES-triggered signals: implications for chemotaxis. J Cell Biol 1999;144:755–765.

    PubMed  Google Scholar 

  153. Kim CH, Hangoc G, Cooper S, Helgason CD, Yew S, Humphries RK, Krystal G, Broxmeyer HE:Altered responsiveness to chemokines due to targeted disruption of SHIP. J Clin Invest 1999;104:1751–1759.

    PubMed  CAS  Google Scholar 

  154. Cuevas B, Lu YL, Watt S, Kumar R, Zhang JY, Siminovitch KA, Mills GB. SHP-1 regulates Lck-induced phosphatidylinositol 3-kinase phosphorylation and activity. J Biol Chem 1999;274: 27,583–27,589.

    CAS  Google Scholar 

  155. Rao N, Lupher ML, Jr., Ota S, Reedquist KA, Druker BJ, Band H: The linkerphosphorylation site Tyr232 mediates the negative regulatory effect of Cbl on ZAP-70 in T cells. J Immunol 2000;164: 4616–4626.

    PubMed  CAS  Google Scholar 

  156. Wardenhurg JB, Pappu R, Bu JY, et al.: Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 1998;9:607–616.

    Google Scholar 

  157. Bacon KB, Szabo MC, Yssel H, Bolen JB, Schall TJ: RANTES induces tyrosine kinase activity of stably complexed pl 25FAK and ZAP-70 in human T cells. J Exp Med 1996;184:873–882.

    PubMed  CAS  Google Scholar 

  158. Soede RD, Wijnands YM, Van Kouteren-Cobzaru I, Roos E: ZAP-70 tyrosine kinase is required for LFA-1-dependent T cellmigration. J Cell Biol 1998;142:1371–1379.

    PubMed  CAS  Google Scholar 

  159. Tilton B, Ho L, Oberlin, E, et al.: Signal transduction by CXC chemokine receptor 4: stromal cell-derived factor 1 stimulates prolonged protein kinase B and extracellular signal-regulated kinase 2 activation in T lymphocytes. J Exp Med 2000;192: 313–324.

    PubMed  CAS  Google Scholar 

  160. Nanki T, Lipsky PE: Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+T cell activation. J Immunol 2000;164: 5010–5014.

    PubMed  CAS  Google Scholar 

  161. Peacock JW, Jirik FR: TCR activation inhibits chemotaxis toward stromal cell-derived factor-1: evidence for reciprocal regulation between CXCR4 and the TCR. J Immunol 1999;162: 215–223.

    PubMed  CAS  Google Scholar 

  162. Hesselgesser J, Liang M, Hoxie J, et al.: Identification and characterization of the CXCR4 chemokine receptor in human T cell lines: ligandbinding, biological activity, and HIV-1 infectivity. J Immunol 1998;160:877–883.

    PubMed  CAS  Google Scholar 

  163. Poznansky MC, Olszak IT, Foxall R, Evans RH, Luster AD, Scadden DT: Active movement of T cells away from a chemokine. Nature Med 2000; 6:543–548.

    PubMed  CAS  Google Scholar 

  164. Feng Y, Broder CC, Kennedy PE, Berger EA: HIV-I entry cofactor: functional cDNA cloning of a seven-transmembrane, G proteincoupled receptor. Science 1996; 272:872–877.

    PubMed  CAS  Google Scholar 

  165. Ivey-Hoyle M, Culp JS Chaikin MA, et al.: Envelope glycoproteins from biologically diverse isolates of immunodeficiency viruses have widely differentaffinities for CD4. Proc Natl Acad Sci USA 1991; 88:512–516.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joji Shimizu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pribila, J.T., Shimizu, J. Signal transduction events regulating integrin function and T cell migration. Immunol Res 27, 107–128 (2003). https://doi.org/10.1385/IR:27:1:107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:27:1:107

Key Words

Navigation