Skip to main content
Log in

Diversity and duplicity

Human Fcγ receptors in host defense and autoimmunity

  • Published:
Immunologic Research Aims and scope Submit manuscript

Conclusion

Given the central role of Ig in bridging the innate and acquired immune systems through both the affector and effector arms, it is not surprising that receptors for Ig play an important role in immune function. Strategies to block their function have been developed by microbial pathogens, and evolution has endowed humans with a diverse set of physiologically relevant receptor variants, presumably to allow fine tuning of the immune response. At least several of these variants appear to be risk factors for autoimmune disease, and they demonstrate the importance of more subtle variation in structure and function. These observations may assist in guiding the engineering of MAbs and Fc-fusion proteins for more effective Ig-based therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frank MM, Hamburger, MI, Lawley TJ, Kimberly RP, Plotz PH: Defective reticuloendothelial system Fc-receptor function in systemic lupusery thematosus. N Engl J Med 1977;300:518–523.

    Google Scholar 

  2. Kimberly RP, Parris TM, Inman RD, McDougal JS: Dynamics of mononuclear phagocyte system Fc receptor function in systemic lupus erythematosus: relation to disease activity and circulating immune complexes. Clin Exp Immunol 1983;51:261–268.

    PubMed  CAS  Google Scholar 

  3. Parris TM, Kimberly RP, Inman RD, McDougal JS, Gibofsky A, Christian CL: Defective Fc receptor-mediated function of the mononuclear phagocyte system in lupus nephritis. Ann Intern Med 1982;97:526–532.

    PubMed  CAS  Google Scholar 

  4. Hamburg M, Lawley TJ, Kimberly RP, Plotz PH, Frank MM: A serial study of splenic reticuloendothelial system Fc receptor functional activity in systemic lupus erythematosus. Arthritis Rheum 1982; 25:48–54.

    Google Scholar 

  5. Kimberly RP, Ralph P: Endocytosis by the mononuclear phagocyte system and autoimmune disease. Am J Med 1983;74:481–493.

    PubMed  CAS  Google Scholar 

  6. Kimberly RP: Immune complexes in the rheumatic diseases. Rheum Dis Clin North Am 1987;13: 583–596.

    PubMed  CAS  Google Scholar 

  7. Kimberly RP, Meryhew NL, Runquist OA: Mononuclear phagocyte function in SLE. 1. Bipartite Fc- and complement-dependent dysfunction. J Immunol 1986;137:91–96.

    PubMed  CAS  Google Scholar 

  8. Unkeless JC, Scigliano E, Freedman VH: Structure and function of human and murine receptors for IgG. Annu Rev Immunol 1988;6: 251–281.

    PubMed  CAS  Google Scholar 

  9. Ravetch JV, Kinet JP: Fc receptors. Annu Rev Immunol 1991;9: 457–492.

    PubMed  CAS  Google Scholar 

  10. Edberg JC, Salmon JE, Kimberly RP: Functional capacity of Fcγ/receptorIII (CD16) on human neutrophils. Immunol Res 1992;11: 239–251.

    PubMed  CAS  Google Scholar 

  11. Hulett MD, Hogarth PM: Molecular basis of Fc receptor function Adv Immunol 1994;57:1–127.

    PubMed  CAS  Google Scholar 

  12. Kimberly RP, Salmon JE, Edberg JC: Receptors for immunoglobulin G: molecular diversity and implications for disease. Arthritis Rheum 1995;38:306–314.

    PubMed  CAS  Google Scholar 

  13. Daeron M. Fc receptor biology. Annu Rev Immunol 1997;15: 203–234.

    PubMed  CAS  Google Scholar 

  14. Ravetch JV, Bolland S: IgG Fc receptors. Annu Rev Immunol 2001;19:275–290.

    PubMed  CAS  Google Scholar 

  15. Mechetina LV, Najakshin, AM, Volkova OY, Guselnikov SV, Faizulin RZ, Alabyev BY, Chikaev NA, Vinogradova MS, Taranin AV: FCRL, a novel member of the leukocyte Fc receptor family possesses unique structural features. Eur J Immunol 2002;32: 87–96.

    PubMed  CAS  Google Scholar 

  16. Hatzivassiliou G, Miller I, Takizawa J, et al: IRTA1 and IRTA2, novel immunoglobulin superfamily receptors expressed in B cells and involved inchromosome Iq21 abnormalities in B cell malignancy. Immunity 2001;14:277–289.

    PubMed  CAS  Google Scholar 

  17. Davis RS, Wang YH, Kubagawa H, Cooper MD: Identification of a family of Fc receptor homologs with preferential B cell expression. Proc Natl Acad Sci USA 2001; 98:9772–9777.

    PubMed  CAS  Google Scholar 

  18. Shibuya A, Sakamoto N, Shimizu Y, et al: Fc receptor mediates endocytosis of IgM-coated microbes. Nat Immunol 2000;1:441–446.

    PubMed  CAS  Google Scholar 

  19. Lalezari P: Granulocyte antigen systems; in Engelfriet CP, van Loghem JJ, von dem Bome AEG (eds): Immunohematology. Amsterdam, Elsevier, 1984, pp. 33–45.

    Google Scholar 

  20. Tax WJM, Willems HW, Reekers PPM, Capel PJA, Koene RAP: Polymorphism in mitogenic effect of IgG1 monoclonal antibodies against T3 antigen on human T cells. Nature 1993;304:445–447.

    Google Scholar 

  21. Tax WJM, Tamboer WP, Jacobs CW, Frenken LA, Koene RAP: Role of polymorphic Fc receptor FcR11a in cytokine release and adverse effects of murine IgG1 anti-CD3/T cell receptor antibody (WT31). Transplantation 1997;63: 106–112.

    PubMed  CAS  Google Scholar 

  22. Salmon JE, Millard SS, Schachter LA, Arnett FC, Ginzler EM, Gourley MF, Ramsey-Goldman R, Peterson MG, Kimberly RP: FcγRIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest 1996;97:1348–1354.

    PubMed  CAS  Google Scholar 

  23. Duits AJ, Bootsma H, Derksen RHW, Spronk PE, Kater L, Kallenberg CGM, Capel PJA, Westerdaal NA, Spierenburg GT, Gmelig-Meyling FH, van de Winkel JGJ: Skewed distribution of IgG Fc receptor IIa (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients. Arthritis Rheum 1995; 39:1832–1836.

    Google Scholar 

  24. Botto M, Theodoridis E, Thompson EM, Beynon HL, Briggs D, Isenberg DA, Walport MJ, Davies KA: Fcγ RIIa polymorphism in systemic lupus erythematosus: no association with disease. Clin Exp Immunol 1996;104:264–268.

    PubMed  CAS  Google Scholar 

  25. Manger K, Repp R, Spriewald BM, Rascu A, Geiger A, Wassmuth R, Westerdaal NA, Wentz B, Manger B, Kalden JR, van de Winkel JGJ: Fcγ receptor IIa polymorphism in Caucasian patients with systemic lupus erythematosus: association with clinical symptoms. Arthritis Rheum 1998;41:1181–1189.

    PubMed  CAS  Google Scholar 

  26. Haseley LA, Wisnieski JJ, Denbury MR, Michael-Grossman AR, Ginzler EM, Gourley MF, Hoffman JH, Kimberly RP, Salmon JE: Antibodies to Clq in systemic lupus erythematosus: characteristics and relation to FcγRIIA alleles. Kidney Int 1997;52: 1375–1380.

    PubMed  CAS  Google Scholar 

  27. Song YW, Han CW, Kang SW, Baek HJ, Lee EB, Shin CH, Hahn BH, Tsao BP: Abnormal distribution of Fcγ receptor type IIa polymorphisms in Korean patients with systemic lupus erythematosus. Arthritis Rheum 1998;41:421–426.

    PubMed  CAS  Google Scholar 

  28. Norsworthy P, Theodoridis E, Botto M, Anthanassiou P, Beynon H, Gordon C, Isenberg D, Walport MJ, Davies KA: Over-representation of the Fcγreceptor type R131/R131 genotype in Caucasoid systemic lupusery thematosus patients with autoantibodies to C1q and glomerulonephritis. Arthritis Rheum 1999;42:1828–1832.

    PubMed  CAS  Google Scholar 

  29. Dijstelbloem HM, Bijl M, Fijnheer R, Scheepers RH, Oost WW, Jansen MD, Sluiter WJ, Limbury PC, Derksen RH, van de Winkel JGJ, Kallenberg CGM: Fcγ receptor polymorphisms in systemic lupus erythematosus: association with disease and in vivo clearance of immune complexes. Arthritis Rheum 2000;43:2793–2800, 2000.

    PubMed  CAS  Google Scholar 

  30. Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, Salmon JE, Kimberly RP: A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 1997;100: 1059–1070.

    PubMed  CAS  Google Scholar 

  31. Koene HR, Kleijer M, Swaak AJ, Sullivan KE, Bijl M, Petri MA, Kallenberg CGM, Roos D, von dem Bome AEG, de Haas M: The FcγRIIIA-158F allele is a risk factor for systemic lupus erythematosus. Arthritis Rheum 1998; 41:1813–1818.

    PubMed  CAS  Google Scholar 

  32. Salmon JE, Ng S, Yoo DH, Kim TH, Kim SY, Song GG: Altered distribution of Fcγreceptor IIIA alleles in a cohort of Korean patients with lupus nephritis. Arthritis Rheum 1999;42:818–819.

    PubMed  CAS  Google Scholar 

  33. Seligman VA, Suarez C, Lum R, Inda SE, Lin D, Li H, Olson JL, Seldin MF, Criswell LA: The Fcγ receptorIIIA-158F allele is a major risk factor for the development of lupus nephritis among Caucasians but not non-Caucasians. Arthritis Rheum 2001;44:618–625.

    PubMed  CAS  Google Scholar 

  34. Edberg JC, Langefeld CD, Wu J, Moser KL, Kaufman KM, Kelly J, Barsal V, Brown WM, Salmon JE, Rich SS, Harley JB, Kimberly RP: Genetic linkage and association of Fcγ receptor IIIA (CD16A) on chromosome 1q23 with human systemic lupus erythematosus. Arthritis Rheum 2002; in press.

  35. Salmon JE, Kapur S, Kimberly RP: Opsonin independent ligation of Fc receptors: the 3G8-bearing receptors on neutrophils mediate the phagocytosis of Concanavalin A-treated erythrocytes and non-opsonized Escherichia coli. J Exp Med 1987;166:1798–1813.

    PubMed  CAS  Google Scholar 

  36. Crowell RE, Du Clos TW, Montoya G, Heaphy E, Mold C: Creactive protein receptors on the human monocytic cell line U937: evidence for additional binding to FcγRI. J Immunol 1991;147: 3445–3451.

    PubMed  CAS  Google Scholar 

  37. Stein MP, Edberg JC, Kimberly RP, Mangan EK, Bharadwaj D, Mold C, DuClos TW: C-reactive protein binding to FcγRIIa on human monocytes and neutrophils is allele-specific. J Clin Invest 2000;105:369–376.

    PubMed  CAS  Google Scholar 

  38. Ernst LK, van de Winkel JGJ, Chiu IM, Anderson CL. Three genes for the human high affinity Fc receptor for IgG (FcgRI) encode four distinct transcription products. J Biol Chem 1992;267: 15,692–15,700.

    CAS  Google Scholar 

  39. Porges AJ, Redecha PB, Doebele R, Pan LC, Salmon JE, Kimberly RP: Novel Fcγ receptor I family gene products in human mononuclear cells. J Clin Invest 1992: 90:2102–2109.

    PubMed  CAS  Google Scholar 

  40. Ernst LK, Duchemin AM, Anderson CL: Association of the high-affinity receptor for IgG (FcgRI) with the g subunit of the IgE receptor. Proc Natl Acad Sci USA 1993;90:6023–6027.

    PubMed  CAS  Google Scholar 

  41. Scholl PR, Geha RS: Physical association between the high-affinity IgG receptor (FcγRI) and the gamma subunit of the high-affinity IgE receptor (FcεRIγ). Proc Natl Acad Sci USA 1993;90: 8847–8850.

    PubMed  CAS  Google Scholar 

  42. Wang AV, Scholl PR, Geha RS: Physical and functional association of the high affinity immunoglobulin G receptor (FcγRI) with the kinases Hck and Lyn. J Exp Med 1994;180:1165–1170.

    PubMed  CAS  Google Scholar 

  43. Edberg JC, Yee AM, Rakshit DS, Chang DJ, Gokhale JA, Indik ZK, Schreiber AD, Kimberly RP: The cytoplasmic domain of human FcgammaRIa alters the functional properties of the cgammaRI. gamma-chain receptor complex. J Biol Chem 1999;274: 30,328–30,333.

    CAS  Google Scholar 

  44. Morel PA, Ernst LK, Metes D: Functional CD32 molecules on human NK cells. Leuk Lymphoma 1999;35:47–56.

    PubMed  CAS  Google Scholar 

  45. Metes D, Manciulea M, Pretrusca D, Rabinowich H, Ernst LK, Popescu I, Caluguru A, Sulica A, Chambers WH, Herberman RB, Morel PA: Ligand binding specificities and signal transduction pathways of Fc gamma receptor IIc isoforms: the CD32 isoforms expressed by human NK cells. Eur J Immunol 1999;29:2842–2852.

    PubMed  CAS  Google Scholar 

  46. Metes D, Ernst LK, Chambers WH, Sulica A, Herberman RB, Morel PA: Expression of functional CD32 molecules on human NK cells is determined by an allelic polymorphism of the Fcγ/R11C gene. Blood 1998;91:2369–2680

    PubMed  CAS  Google Scholar 

  47. Hamada F, Aoki M, Akiyama T, Toyoshima K: Association of immunoglobulin GFc receptor 11 with Src-like protein-tyrosine kinase Fgr in neutrophils. Proc Natl Acad Sci USA 1993;90: 6305–6309.

    PubMed  CAS  Google Scholar 

  48. Kiener PA, Rankin BM, Burkhardt AL, Schieven GL, Gilliland LK, Rowley RB, Bolen JB, Ledbetter JA: Cross-linking of Fcγ receptor I (FcγR1) and receptor II (FcγRII) on monocytic cells activates a signal transduction pathway common to both Fc receptors that involves the stimulation of p72 Syk protein tyrosine kinase. J Biol Chem 1993;268:24,442–24,448.

    CAS  Google Scholar 

  49. Pearse RN, Kawabe T, Bolland S, Guinamard R, Kurosaki T, Ravetch JV: SHIP recruitment attenuates FcγRIIb-induced B-cell apoptosis. Immunity 1999;10:753–760.

    PubMed  CAS  Google Scholar 

  50. Edberg JC, Kimberly RP: Cell-typespecific glycoforms of FcγRI-IIa (CD16): differential ligand binding. J Immunol 1997;159: 3849–3857.

    PubMed  CAS  Google Scholar 

  51. Bomerot C, Amigorena S, Choquet D, Pavlovich R, Choudroun V, Fridman WH: Role of associated/chain in tyrosine kinase activation viam urine FcγRIII. EMBO J 1992;11:2747–2757.

    Google Scholar 

  52. Wirthmueller U, Kurosaki T, Murakami MS, Ravetch JV: Signal transduction by FcgRIII (CD16) is mediated through the gehain. J Exp Med 1992;175:1381–1390.

    PubMed  CAS  Google Scholar 

  53. Park JG, Murray RK, Chien P, Darby C, Schreiber AD: Conserved tyrosine residues of the γ subunit are required for a phagocytic signal mediated by FcγRIIIA. Blood 1993;92:2073–2079.

    CAS  Google Scholar 

  54. Greenberg S, Chang P, Silverstein SC: Tyrosine phosphorylation of the γ subunit of Fcγ receptors, p72 sy k and paxillin during Fc receptor mediated phagocytosis in macrophages. J Biol Chem 1994; 269:3897–3902.

    PubMed  CAS  Google Scholar 

  55. Kurosaki T, Gander I, Wirthmueller U, Ravetch JV: The beta subunit of the FceRI is associated with the FcγRIII on mast cells. J Exp Med 1992;175:447–451.

    PubMed  CAS  Google Scholar 

  56. Kurosaki T, Ravetch JV: A single amino acid in the glycosyl phosphatidy linositol attachment domain determines the membrane topology of FcγRIII. Nature 1989; 342:805–807.

    PubMed  CAS  Google Scholar 

  57. Tosi MF, Zakem H: Surface expression of Fcγreceptor III (CD16) on chemoattractant-stimulated neutrophils is determined by both surface shedding and translocation from intracellular storage compartments. J Clin Invest 1992;90: 462–470.

    PubMed  CAS  Google Scholar 

  58. Voice JK, Lachmann PJ: Interactions of defined soluble IgG immune complexes with Fc and complement receptors on human neutrophils (PMN). Proc Intl Congress Immunol 1995;9: 4626.

    Google Scholar 

  59. Edberg JC, Moon JJ, Chang DJ, Kimberly RP: Differential regulation of human neutrophil FeγRIIa (CD32) and FcγRIIIb (CD16)-induced Ca2+ transients. J Biol Chem 1982;273:8071–8079.

    Google Scholar 

  60. Morton HC, Schiel AE, Janssen SWJ, van de Winkel JGJ: Alternatively spliced forms of the human myeloid Fcα, receptor (CD89) in neutrophils. Immunogenetics 1996;43:246–247.

    Article  PubMed  CAS  Google Scholar 

  61. Patry C, Sibille Y, Lehuen A, Monteiro RC: Identification of Fcα, receptor (CD89) isoforms generated by alternative splicing that are differentially expressed between blood monocytes and alveolar macrophages. J Immunol 1996; 156:4442–4448.

    PubMed  CAS  Google Scholar 

  62. Pleass RJ, Andrews PD, Kerr MA, Woof JM: Alternative splicing of the human IgA Fe receptor CD89 in neutrophils and eosinophils. Biochem J 1996;318:771–777.

    PubMed  CAS  Google Scholar 

  63. Reterink TJF, Verweij CL, van Es LA, Daha MR: Alternative splicing of IgA Fc receptor (CD89) transcripts. Gene 1996;175:279–280.

    PubMed  CAS  Google Scholar 

  64. van Dijk TB, Bracke M, Caldenhoven E, Raaijmakers JAM, Lammers JWJ, Koenderman L, de Groot RP: Cloning and characterization of FcαRb, a novel Fcα receptor (CD89) isoform expressed in cosinophils and neutrophils. Blood 1996;88:4229–4238.

    PubMed  Google Scholar 

  65. Morton HC, van den Herik-Oudijk IE, Vossebeld P, Snijders A, Verhoeven AJ, Capel PJA, Van de Winkel JGJ: Functional association between the human myeloid immunoglobulin A Fc receptor (CD89) and FcR gamma chain—molecular basis for CD89/FcR gamma chain association. J Biol Chem 1995;270:29,781–29,787.

    CAS  Google Scholar 

  66. Stewart WW, Mazengera RL, Shen L, Kerr MA: Uraggregated serum IgA binds to neutrophil FcαR at physiological concentrations and is endocytosed but cross-linking is necessary to elicit a respiratory burst. J Leuk Biol 1994;56:481–487.

    CAS  Google Scholar 

  67. Mackenzie SJ, Kerr MA: IgM monoclonal antibodies recognizing FcαR but not FcγRIII triggera respiratory burst in neutrophils although both trigger an increase in intracellular calcium levels and degranulation. Biochem J 1995; 306:519–523.

    PubMed  CAS  Google Scholar 

  68. Patry C, Herbelin A, Lehuen A, Bach JF, Monteiro RC: Fcαreceptors mediate release of tumour necrosis factor-α and interleukin-6 by human monocytes following receptor aggregation. Immunology 1995;86:1–5.

    PubMed  CAS  Google Scholar 

  69. Kinet JP: The high-affinity IgE receptor (FcεRI): from physiology to pathology. Annu Rev Immunol 1999;17:931–972.

    PubMed  CAS  Google Scholar 

  70. Garman SC, Kinet JP, Jardetzky TS: Crystal structure of the human high-affinity IgE receptor. Cell 1998;95:951–961.

    PubMed  CAS  Google Scholar 

  71. Simister NE, Ahouse JC: The structure and evolution of FcRn. Res Immunol 1996;147:333–337.

    PubMed  CAS  Google Scholar 

  72. Ghetie V, Ward ES: Multiple roles for the major histocompatibility complex class 1-related FcRn. Annu Rev Immunol 2000; 18:739–766.

    PubMed  CAS  Google Scholar 

  73. Dickinson BL, Bradizadegan K, Wu Z, Ahouse JC, Zhu X, Simister NE, Blumberg RS, Lencer WI: Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest 1999;104:903–911.

    PubMed  CAS  Google Scholar 

  74. Israel EJ, Wilsker DF, Hayes KC, Schoenfeld D, Simister NE: Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology 1996;89:573–578.

    PubMed  CAS  Google Scholar 

  75. Liu Z, Roopenian DC, Zhou X, Christianson GJ, Diaz LA, Sedmak DD, Anderson CL: Beta2-microglobulin-deficient mice are resistant to bullous pemphigoid. J Exp Med 1997;186:777–783.

    PubMed  CAS  Google Scholar 

  76. Zhu X, Meng G, Dickinson BL, Li X, Mizoguchi E, Miao L, Wang Y, Robert C, Wu B, Smith PD, Lencer WI, Blumberg RS: MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, in testinal macrophages and dendritic cells. J Immunol 2001;166:3266–3276.

    PubMed  CAS  Google Scholar 

  77. Stephens JC, Schneider JA, Tanguay DA, et al: Haplotype variation and linkage disequilibrium in 313 human genes. Science 2001; 293:489–493.

    PubMed  CAS  Google Scholar 

  78. Van de Winkel JGJ, de Wit TP, Ernst LK, Capel PJA, Ceuppens JL: Molecular basis for a familial defect in phagocyte expression of IgG receptor I (C D64). J Immunol 1995;154:2896–2903.

    PubMed  Google Scholar 

  79. Warmerdam PAM, van de Winkel JGJ, Vlug A, Westerdal NAC, Capel PJA: A single amino acid in the second Ig-like domain of the human Fcγ receptor 11 is critical in human IgG2 binding. J Immunol 1991;147:1338–1343.

    PubMed  CAS  Google Scholar 

  80. Clark MR, Stuart SG, Kimberly RP, Ory PA, Goldstein IM: A single amino acid distinguishes the high-responder from low-responder form of Fc receptor II on human monocytes. Eur J Immunol 1991; 21:1911–1916.

    PubMed  CAS  Google Scholar 

  81. Norris CF, Pricop L, Millard SS, Taylor SM, Surrey S, Schwartz E, Salmon JE, McKenzie SE: A naturally occurring mutation in FcγRIIA: a Q to K 127 change confers unique binding properties to the R131 allelic form of the receptor. Blood 1998;91:656–662.

    PubMed  CAS  Google Scholar 

  82. Sondermann P, Huber R, Oosthuizen V, Jacob U: The 3.2 A crystal structure of the human IgGI Fc fragment-FcγRIII complex. Nature 2000;406:267–273.

    PubMed  CAS  Google Scholar 

  83. Huizinga TWJ, Kleijer M, Tetteroo PA, Roos D, Krondem Borne AEG: Biallelic neutrophil NA-antigen system is associated with a polymorphism on the phospho-inositol-linked Fcγreceptor III (CD16). Blood 1990;75:213–217

    PubMed  CAS  Google Scholar 

  84. Bux J, Stein EL, Bierling P, Fromont P, Clay M, Stroncek D, Santoso S: Characterization of a new alloantigen (SH) on the human neutrophil Fcγreceptor IIIb. Blood 1997;89:1027–1034.

    PubMed  CAS  Google Scholar 

  85. Salmon JE, Edberg JC, Kimberly RP: Fcγreceptor III on human neutrophils: allelic vriants have functionally distinct capacities. J Clin Invest 1990;85:1287–1295.

    PubMed  CAS  Google Scholar 

  86. Edberg JC, Kimberly RP: Modulation of Fcγ and complement receptor function by the glycosyl-phosphatidyl linositol—anchored form of FcγRIII. J Immunol 1994;152: 5826–5835.

    PubMed  CAS  Google Scholar 

  87. Salmon JE, Millard SS, Brogle NL, Kimberly RP: Fcγ receptor IIIb enhances Fcγ receptor IIa function inanoxidant-dependent and allelesensitive manner. J Clin Invest 1995;95:2877–2885

    PubMed  CAS  Google Scholar 

  88. Du Clos TW: C reactive protein and the immune response. Sci Med 2002;8:108–117.

    CAS  Google Scholar 

  89. Szalai AJ, Agrawal A, Greenhough TJ, Volanakis JE: C-reactive protein: structural biology, gene expression, and host defense function. Immunol Res 1997;16: 127–136.

    Article  PubMed  CAS  Google Scholar 

  90. Bredius RG de Vries CE, Troelstra A, van Alphen L, Weening RS, van de Winkel JGJ, Out TA: Phagocytosis of Staphylococcus aureus and Haemophilus influenzae type B opsonized with polyclonal human IgG I and IgG 2 antibodies: functional hFcγ RIIa poly morphism to IgG2. J Immunol 1993; 151:1463–1472.

    PubMed  CAS  Google Scholar 

  91. Fijen CA, Bredius RG, Kuijper EJ: Polymorphism of IgG Fc receptors in meningococcal disease [letter]. Ann Intern Med 1993;119:636.

    PubMed  CAS  Google Scholar 

  92. Sanders LA, van de Winkel JGJ, Rijkers GT, Voorhorst-Ogink MM, de Haas M, Capel PJA, Zegers BJ: Fcγ receptor IIa (CD32) heterogeneity in patients with recurrent bacterial respiratory tractinfections. J Infect Dis 1994;170:854–861.

    PubMed  CAS  Google Scholar 

  93. Bredius RG, Derkx BH, Fijen CA, de Wit TP, de Haas M, Weening RS, van de Winkel JGJ, Out TA: Fcγreceptor IIa (CD32) polymorphism in fulminant meningococcalseptics hock in children. J Infect Dis 1994;170:848–853.

    PubMed  CAS  Google Scholar 

  94. Yee AMF, Ng SC, Sobel RE, Salmon JE: FcγRIIA polymorphism as a risk factor for invasive pneumonoccal infections in systemic lupusery thematosus. Arthritis Rheum 1997;40: 1180–1182.

    PubMed  CAS  Google Scholar 

  95. Kimberly RP, Moreland LW, Wu J, Edberg JC, Weinblatt M, Blosch C: Occurrence of infection varies with Fc receptor genotype. Arthritis Rheum 1998;41:S1445.

    Google Scholar 

  96. Lei B, DeLeo LR, Hoe NP, Graham MR, Mackie SM, Cole RL, Liu M, Hill HR, Low E, Federle MJ, Scott JR, Musser JM: Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis. Nat Med 2001;7:1298–1305.

    PubMed  CAS  Google Scholar 

  97. Yang ZY: Distinet cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science 1998;279:1034–1037.

    PubMed  CAS  Google Scholar 

  98. Graille M, Stura EA, Corper AL, Sutton BJ, Taussig MJ, Charhonnier JB, Silverman GJ: Crystal structure of a Staphy lococcus aureus protein A domain complexed with the Fah fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci USA 2001;97:5399–5404.

    Google Scholar 

  99. Moser KL, Neas BR, Salmon JE: Genome scan of human systemic lupusery thematosus: evidence for linkage on chromosome 1q in African-American pedigrees. Proc Natl Acad Sci USA 1998;95: 14,869–14,874.

    CAS  Google Scholar 

  100. Shai R, Quismorio FP Jr, Li L, Kwon OJ, Morrison J, Wallace DJ, Neuwelt CM, Brauthar C, Gauderman WJ, Jacob CO: Genome wide screen for systemic lupus erythematosus susceptibility genes in multiplex families. Hum Mol Genet 1999;8:639–644.

    PubMed  CAS  Google Scholar 

  101. Tsao BP, Cantor RM, Arnett FM: Investigation of SLE-linked regions identified by genome scans: support for 1q23, 16q13 and 20p12. Arthritis Rheum 2000; 43:S278.

    Google Scholar 

  102. Wakeland EK, Liu K, Graham RR, Behrens TW: Delineating the genetic basis of systemic lupus erythematosus. Immunity 2001;15: 397–408.

    PubMed  CAS  Google Scholar 

  103. Su K, Wu J, Edberg JC, McKenzie SE, Kimberly RP: Genomic organization of the classical low affinity Fcγ receptor genes. Genes Immun 2002; in press.

  104. Ji H, Ohmura K, Mahmood U, et al: Arthritis critically dependent on innate immune system players. Immunity 2002;16:157–168.

    PubMed  CAS  Google Scholar 

  105. Chatham WW, Edberg JC, Kimberly RP: Roles of neutrophils, in Rheumatoid Arthritis: Frontiers in Pathogenesis and Treatment. Firestein G, Panayi G, Wollheim F (eds): Oxford, Oxford University Press, 2000, pp 101–112.

    Google Scholar 

  106. Nieto A, Pascual M, Caliz R, Mataran L, Martin J: Involvement of Feγ receptor IIIA genotypes in susceptibility to rheumatoid darthritis. Arthritis Rheum 2000;43: 735–739.

    PubMed  CAS  Google Scholar 

  107. Morgan AW, Griffiths B, Ponchel F, Montague BM, Ali M, Gardner PP, Gooi HC, Situnayake RD, Markham AF, Emery P, Isaacs JD: Fcγ receptor type IIIA is associated with rheumatoid arthritis in two distinct ethnic groups. Arthritis Rheum 2000;43:2328–2334.

    PubMed  CAS  Google Scholar 

  108. Edberg JC, Wainstein E, Wu J, Csenok E, Sneller MC, Hoffman GS, Keystone EC, Gross WL, Kimberly RP: Analysis of FcγRII gene polymorphisms in Wegener's granulomatosis. Exp Clin Immunogenet 1997;14:183–195.

    PubMed  CAS  Google Scholar 

  109. Tse WY, Abadeh S, McTiernan A, Jefferis R, Savage CO, Adu D: No association between neutrophil FcγRIIa allelic polymorphism and anti-neutrophil cytoplasmic antibody (ANCA)—positive systemic vasculitis. Clin Exp Immunol 1999;117:198–205.

    PubMed  CAS  Google Scholar 

  110. Wainstein E, Edberg J, Csemok E, Sneller M, Hoffman G, Keystone E, Gross W, Salmon J, Kimberly R: FegRIIIB alleles predict renal dysfunction in Wegener's granulomatosis. Arthritis Rheum 1996; 39:S210.

    Google Scholar 

  111. Dijstelbloem HM, Scheepers RH, Oost WW, Stegeman CA van der Pol WL, Sluiter WJ, Kallenberg CG, van de Winkel JG, Tervaert JW: Fcγ receptor polymorphisms in Wegener's granulomatosis: risk factors for disease relapse. Arthritis Rheum 1999;42:1823–1827.

    PubMed  CAS  Google Scholar 

  112. Wing MG, Moreau T, Greenwood J, Smith RM, Hale G, Isaacs J, Waldmann H, Lachmann PJ, Compston A: Mechanisms of firstdose cytokine-release syndrome by CAMPATH 1-H: involvement of CD16 (FcγRIII) and CDI 1a/CD18 (LFA-1) on NK cells. J Clin Invest. 1996;98:2819–2826.

    PubMed  CAS  Google Scholar 

  113. Tax WJ, Tamboer WP, Jacobs CW, Frenken LA, Koene RA: Role of polymorphic Fc receptor Fc gammaRIIIa in cytokine release and adverse effects of murine IgGI anti-CD3/T cell receptor antibody (WT31). Transplantation 1997;63: 106–112.

    PubMed  CAS  Google Scholar 

  114. Anolik JH, Campbell D, Ritchlin C, et al: B lymphocyte depletion as a novel treatment for systemic lupus erythematosus (SLE): Phase I/II trial of rituximab (RIT-USAN®) in SLE. Arthritis Rheum 2001;44:S2009.

    Google Scholar 

  115. Carton G, Dacheus L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H: Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism on IgG Fc receptor FcγRIIIa gene. Blood 2001;98: S2523.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Kimberly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimberly, R.P., Wu, J., Gibson, A.W. et al. Diversity and duplicity. Immunol Res 26, 177–189 (2002). https://doi.org/10.1385/IR:26:1-3:177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:26:1-3:177

Key Words

Navigation