Skip to main content
Log in

Macrophage signaling and respiratory burst

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Macrophages are key defenders of the lung and play an essential role in mediating the inflammatory response. Critical to this is the activation of the NADPH oxidase. Through receptor-mediated interactions, extracellular stimuli activate pathways that signal for the phosphorylation and assembly of the NADPH oxidase. Once the NADPH oxidase is activated, it produces superoxide and H2O2 in a process known as the respiratory burst. The involvement of O2 and H2O2 in the antimicrobicidal function of macrophages has been assumed for many years, but it is now clear that the H2O2 produced by the respiratory burst functions as a second messenger and activates major signaling pathways in the alveolar macrophage. Both the nuclear factor-κB and activator protein-1 transcription factors are activated by H2O2 produced by the respiratory burst, and, since these control the inducible expression of genes whose products are part of the inflammatory response, thismay be a critical link between the respiratory burst and other in flammatory responses. The c-Jun N-terminal kinase (JNK) and extracellular-regulated kinase (ERK) pathways, two members of the mitogen-activated protein kinase family, are also activated by the respiratory burst. JNK is activated by both exogenous and endogenously produced H2O2 Studies with ERK have shown that specific agonists of the respiratory burst, but not bolus H2O2, can activate this pathway. The ERK pathway also modulates the expression of genes via phosphorylation of the transcription factor Elk-1 that controls the production of the c-Fostran-scription factor. Although an understanding of the mechanism of redox signaling is in its infancy, it is becoming clear that the reactive oxygen species produced by the respiratory burst have a profound effect on intracellular signaling pathways and ultimately in modulating gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nathan CF, Tsumawaki S: Enzymatic basis of macrophage activation. J Biol Chem 1984;259: 4305–4312.

    PubMed  Google Scholar 

  2. de Mendez I, Adams AG, Sokolic RA, Malech HL, Leto TL: Multiple SH3 domain interactions regulate NADPH oxidase assembly in whole cells. EMBO J 1996;15:1211–1220.

    PubMed  Google Scholar 

  3. El Bemma J, Faust LP, Babior BM: The phosphorylation of the respiratory burst oxidase component p47pbax during neutrophil activation. J. Biol Chem 1994;269: 23,431–23,436.

    Google Scholar 

  4. Qualliotine-Mann D, Agwu DE, Ellenburg MD, McCall CE, McPhail LC: Phosphatidic acid and diacylglycerol synergize in a cell-free system for activation of NADPH oxidase from human neutrophils. J Biol Chem 1993;268:23,843–23,849.

    CAS  Google Scholar 

  5. Kaul N, Forman HJ: Activation of NF-kappaB by the respiratory burst of macrophages. Free Radic Biol Med 1996;21:401–405.

    Article  PubMed  CAS  Google Scholar 

  6. Torres M, Forman HJ: Activation of several MAP kinases upon stimulation of rat alveolar macrophages: role of the NADPH oxidase. Arch Biochem Biophys 1999;366:231–239.

    Article  PubMed  CAS  Google Scholar 

  7. Friedlander MA, Hilbert CM, Wu YC, Finegan CK, Rich EA: Disparate cytochemical characteristics and production of cytokines and prostaglandin E2 by human mononuclear phagocytes from the blood, lung, and peritoneal cavity. J Lab Clin Med 1994;123:574–584.

    PubMed  CAS  Google Scholar 

  8. Joseph SK: Inositol trisphosphate: an intracellular messenger produced by Ca2+ mobilizing hormones. Trends Biochem Sci 1984;9:420–421.

    Article  CAS  Google Scholar 

  9. Kanai F, Liu H, Field SJ, Akbary H, Matsuo T, Brown GE, Cantley LC, Yaffe MB: The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol 2001;3:675–678.

    Article  PubMed  CAS  Google Scholar 

  10. Griendling KK, Sorescu D, Ushio-Fukai M: NA D(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000;86:494–501.

    PubMed  CAS  Google Scholar 

  11. Bellomo G, Jewell SA, Thor H, Orrenius S: Regulation of intracellular calcium compartmentation: studies with isolated hepatocytes and t-butyl hydroper-oxide. Proc Natl Acad Sci USA 1982;79:6842–6846.

    Article  PubMed  CAS  Google Scholar 

  12. Bellomo G, Martino A, Aichelmi P, Moore GA, Jewell SA, Orrenius S: Pyridine-nucleotide oxidation, Ca2+ cycling and membrane damage during tert-butyl hydroperoxide metabolism by rat-liver mitochondria. Eur J Biochem 1984;140:1–6.

    Article  PubMed  CAS  Google Scholar 

  13. Livingston FR, Lui EMK, Loeh GA, Foman HJ: Sublethal oxidant stress induces a reversible increase in intracellular calcium dependent on NAD(P)H oxidation in ratal veolar macrophages. Arch Biochem Biophys 1992;299:83–91.

    Article  PubMed  CAS  Google Scholar 

  14. Hoyal CR, Thomas AP, Forman HJ: Hydroperoxide-induced increases in intracellular calcium due to annex in VI translocation and inactivation of plasmamembrane Ca2+-ATPase J Biol Chem 1996;271:29,205–29,210.

    CAS  Google Scholar 

  15. Hoyal CR, Gozal E, Zhou H, Foldenauer K, Forman HJ: Modulation of the ratalveolar macrophage respiratory burst by hydroperoxide is calcium dependen. ArchBiochem Biophys 1996;326:166–171.

    Article  CAS  Google Scholar 

  16. McPhail LC, Clayton CC, Snyderman R: A potential secondmes-senger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science 1984;224: 622–625.

    Article  PubMed  CAS  Google Scholar 

  17. Curnutte JT, Badwey JA, Robinson JM, Karnovsky MJ, Karnovsky ML: Studies on the mechanism of superoxide release from human neutrophisstimulated witharac hidonate. J Biol Chem 1984;259:11,851–11,857.

    CAS  Google Scholar 

  18. Bravo Cuellar A, Homo-Delarche F, Orbach-Arbouys S: Phosphoti-pase A2, an in vivo immunomodulator. Prostaglandins Leukot Essent Fatty Acids 1990;40:31–38.

    Article  PubMed  CAS  Google Scholar 

  19. Kramer RM, Roberts EF, Manetta J, Putnam JE: The Ca24-sensitive cytosolic phospholipase A2 is a 100-kDa protein in human monoblast U937 cells. J Biol Chem 1991;266:5268–5272.

    PubMed  CAS  Google Scholar 

  20. Murphy JK, Hoyal CR LF, Forman HJ: Modulation of the alveolar macrophage respiratory burst by hydroperoxides. Free Radic Biol Med 1995;18:37–45.

    Article  PubMed  CAS  Google Scholar 

  21. Giron-Calle J, Forman HJ: Phospholipase D and priming of the respiratory burst by H2O2 in NR 8383 alveolarmacrophages. Am J Respir Cell Mol Biol 2000;23:748–754.

    PubMed  CAS  Google Scholar 

  22. Hoyal CR, Gozal E, Forman HJ: Hydroperoxide mediated modulation of the alveolar macrophage respiratory burst is independent of thapsigargin effects. FASEB J 1994;8:A666.

    Google Scholar 

  23. Babior BM: NADPH oxidase: an update. Blood 1999;93:1464–1476.

    PubMed  CAS  Google Scholar 

  24. Zhou H, Duncan RF, Robison TW, Gao L, Forman HJ: Ca2+-dependent p47pbox translocation in hydroperoxide modulation of the alveolar macrophage respiratory burst. Am J Physiol 1997;273: L1042-L1047.

    PubMed  CAS  Google Scholar 

  25. Leonarduzzi G, Arkan MC, Basaga H, Chiarpotto E, Sevanian A, Poli G: Lipid oxidation products in cell signaling. Free Radic Biol Med 2000;28:1370–1378.

    Article  PubMed  CAS  Google Scholar 

  26. Forman HJ, Cadenas E (eds): Oxidative Stress and Signal Transduction. New York, Chapman & Hall, 1997

    Google Scholar 

  27. Adler V, Yin Z, Tew KD, Ronai Z: Role of redox potential and reactive oxygen species in stress signaling. Oncogene 1999;18: 6104–6111.

    Article  PubMed  CAS  Google Scholar 

  28. Finkel T: Signal transduction by reactive oxygen species in non-phagocytic cells. J Leukoc Biol 1999;65:337–340.

    PubMed  CAS  Google Scholar 

  29. Suzuki YJ, Forman HJ, Sevanian A: Oxidants as stimulators of signal transduction. Free Radic Biol Med 1997;22:269–285.

    Article  PubMed  CAS  Google Scholar 

  30. Thamickal VJ, Fanburg BL: Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000;279:L1005-L1028.

    Google Scholar 

  31. Baeuerle PA, Baltimore D: The physiology of the NF-κB transcription factor; in Cohen P, Foulkes JG (eds): Molecular Aspects of Cellular Regeneration: Hormonal Control Regulation of Gene Transcription. Amsterdam/North Holland, Elsevier, 1991, pp 409–432.

    Google Scholar 

  32. Lenardo MJ, Baltimore D: NF-kappa B: A pleiotropic mediator of inducible and tissue-specific gene control. Cell 1989;58:227–229.

    Article  PubMed  CAS  Google Scholar 

  33. Baeuerle PA, Baltimore D: IkappaB: a specific inhibitor of the NF-kappaB transcription factor. Science 1988;242:540–546.

    Article  PubMed  CAS  Google Scholar 

  34. Israel A: A role for phosphorylation and degradation in the control of NF-kappaB activity. Trends Genet 1995;11:203–205.

    Article  PubMed  CAS  Google Scholar 

  35. Palombella VJ, Rando OJ, Goldgerg AL, Maniatis T: The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappaB. Cell 1994;78:773–785.

    Article  PubMed  CAS  Google Scholar 

  36. Israel A: The IKK complex: an integrator of all signals that activate NF-kappaB? Trends Cell Biol 2000;10:129–133.

    Article  PubMed  CAS  Google Scholar 

  37. Henkel T, Machleidt T, Alkalay I, Kronke M, Ben-Neriah Y, Baeverle PA: Rapid proteolysis of I kappaB is necessary for activation of transcription factor NF-kappaB. Nature 1993;365:182–185.

    Article  PubMed  CAS  Google Scholar 

  38. Heissmeyer V, Krappmann D, Wulczyn FG, Scheidereit C: NF-kappaB p105 is a target of I kappaB kinases and controls signal induction of Bcl-3-p50 complexes. EMBO J 1999;18:4766–4778.

    Article  PubMed  CAS  Google Scholar 

  39. Schreck R, Rieber P, Baeuerle PA: Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and H1V-1. EMBO J 1991;10:2247–2258.

    PubMed  CAS  Google Scholar 

  40. Bowie A, O'Neill LA: Oxidative stress and nuclear factor-kappaB activation: a reassement of the evidence in the light of recent discoveries. Biochem Pharmacol 2000;59:13–23.

    Article  PubMed  CAS  Google Scholar 

  41. Beyaert R, Cuenda A, Vanden Berghe W, Plaisance S, Lee JC, Haegeman G, Cohen P, Fiers W: The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J 1996;15:1914–1923.

    PubMed  CAS  Google Scholar 

  42. Bird TA, Schooley K, Dower SK, Hagen H, Virca GD: Activation of nuclear transcription factor NF-kappaB by interleukin-1 is accompanied by casein kinase 11-mediated phosphorylation of the p65 subunit. J Biol Chem 1997; 272:32,606–32,612.

    Article  CAS  Google Scholar 

  43. Schreck R, Albermann K, Baeuerle PA: Nuclear factor kappaB: an oxidative stress-responsive transcription factoro feukaryotic cells. Free Radic Res Commun 1992; 17:221–237.

    Article  PubMed  CAS  Google Scholar 

  44. Schmidt KN, Amstad P, Cerruti P, Baeverle PA: The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-kappaB. Chem Biol Int 1995;2:13–22.

    Article  CAS  Google Scholar 

  45. Suzuki YJ, Mizuno M, Packer L: Transient overex pression of catalase does not tinhibit TNF- or PMA-induced NF-kappaB activation. Biochem Biophys Res Commun 1995;210:537–541.

    Article  PubMed  CAS  Google Scholar 

  46. Schreck R, Baeuerle PA: Oxygen radicals as mediators in the activation of inducible eukaryotic transcription factor NF-kappaB. Methods Enzymol 1994;234:151–163.

    PubMed  CAS  Google Scholar 

  47. Kaul N, Gopalakrishna R, Gundimeda U, Choi J, Forman HJ: Role of protein kinase C in basal and hydrogen peroxide-stimulated NF-kappaB activation in the murine macrophage J774A. I cell line. Arch Biochem Biophys 1998; 350:79–86.

    Article  PubMed  CAS  Google Scholar 

  48. Rojanasakul Y, Ye J, Chen F, Wang L, Cheng N, Castranova V, Vallyathan V, Shi X: Dependence of NF-kappaB activation and free radical generation on silica-induced TNF-α production in macrophages. Mol Cell Biochem 1999; 200:119–125.

    Article  PubMed  CAS  Google Scholar 

  49. Kang JL, Go YH, Hur KC, Castranova V: Silica-induced nuclear factor-kappaB activation: involvement of reactive oxygen species and protein tyrosine kinase activation. J Toxicol Environ Health A 2000;60:27–46.

    Article  PubMed  CAS  Google Scholar 

  50. Kang JL, Pack IS, Hong SM, Lee HS, Castranova V: Silica induces nuclear factor-kappaB activation through tyrosine phosphorylation of I kappa B-alpha in RAW264.7 macrophages. Toxicol Appl Pharmacol 2000;169:59–65.

    Article  PubMed  CAS  Google Scholar 

  51. Canty TG Jr, Boyle EM Jr, Farr A, Morgan EN, Verrier ED, Pohlman TH: Oxidative estress induces NF-kappaB nuclear translocation without degradation of I kappaB alpha. Circulation 1999;100: 11361–11364.

    Google Scholar 

  52. Schoonbroodt S, Ferreira V, Best-Belpomme M, Boelaert JR, Legrand-Poels S, Korner M, Piette J: Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of 1κBa in NF-kappaB activation by an oxidative stress. J Immunol 2000;164:4292–4300.

    PubMed  CAS  Google Scholar 

  53. Yin Z, Ivanov VN, Habelhah H, Tew K, Ronai Z: Glutathione S-transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res 2000; 60:4053–4057.

    PubMed  CAS  Google Scholar 

  54. Wang D, Westerheide SD, Hanson JL, Baldwin AS Jr: Tumor necrosis factor alpha-induced phosphorylation of Re1A/p65 on Ser529 is controlled by casein kinase 11. J Biol Chem 2000;275:32,592–32,597.

    CAS  Google Scholar 

  55. Abe MK, Kartha S, Karpova AY, Li J, Liu PT, Kuo WL, Hershenson MB: Hydrogen peroxide ativates extracellular signal-regulated kinase via protein kinase C, Raf-1, and MEK 1. Am J Respir Cell Mol Biol 1998;18:562–569.

    PubMed  CAS  Google Scholar 

  56. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ: Activation of mitogen-activated protein kinase by H2O2: role in cell survival following oxidant injury. J Biol Chem 1996;271:4138–4142.

    Article  PubMed  CAS  Google Scholar 

  57. Aikawa R, Komuro I, Yamazaki T, zou Y, Kudoh S, Tanaka M, Shiojima I, Hiroi Y, Yazaki Y: Oxidative stress activates extra-cellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest 1997;100: 1813–1821.

    PubMed  CAS  Google Scholar 

  58. Tournier C, Thomas G, Pierre J, Jacquemin C, Pierre M, Saunier B: Mediation by arachidonic acid metabolites of the H2O2-induced stimulation of mitogen-activated protein kinases (extracellular-signal-regulated kinase and c-Jun NH2-terminal kinase). Eur J Biochem 1997;244:587–595.

    Article  PubMed  CAS  Google Scholar 

  59. Irani K, Goldschmidt-Clermont PJ: Ras, superoxide and signal transduction. Biochem Pharmacol 1998;55:1339–1346.

    Article  PubMed  CAS  Google Scholar 

  60. Cobb MH: MAP kinase pathways. Prog Biophys Mol Biol 1999; 71:479–500.

    Article  PubMed  CAS  Google Scholar 

  61. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H: Mammalian thiore-doxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 1998;17: 2596–2606.

    Article  PubMed  CAS  Google Scholar 

  62. Gotoh Y, Cooper JA: Reactive oxygenspecies-and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumornecrosis factor-alpha signal transduction. J Biol Chem 1998; 273:17,477–17,482.

    CAS  Google Scholar 

  63. Benedetti A, Comporti M, Esterbauer H: Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim Biophys Acta 1980;620:281–296.

    PubMed  CAS  Google Scholar 

  64. Esterbauer H, Bendetti A, Lang J, Fulceri R, Fauler G, Comporti M: Studies on the mechanism of formation of 4-hydroxynonenal during microsomal lipid peroxidation. Biochim Biophys Acta 1986; 876:154–166.

    PubMed  CAS  Google Scholar 

  65. Parola M, Robino G, Marra F, Pinzani M, Bellomo G, Leonarduzzi G, Chiarugi P, Camandola S, Poli G, Waeg G, Gentilini P, Dianzani MU: HNE interacts directly withJNK isoforms in human hepatic stellate cells. J Clin Invest 1998;102:1942–1950.

    Article  PubMed  CAS  Google Scholar 

  66. Uchida K, Shiraishi M, Naito Y, Torii Y, Nakamura Y, Osawa T: Activation of stress signaling pathways by the end product of lipid peroxidation: 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 1999;274:2234–2242.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Jay Forman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iles, K.E., Forman, H.J. Macrophage signaling and respiratory burst. Immunol Res 26, 95–105 (2002). https://doi.org/10.1385/IR:26:1-3:095

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:26:1-3:095

Key words

Navigation