Immunologic Research

, Volume 22, Issue 2–3, pp 177–190 | Cite as

T cell immunity in neonates

  • Annie M. Garcia
  • Shaza A. Fadel
  • Shui Cao
  • Marcella Sarzotti

Abstract

Typically, neonates exhibit decreased or aberrant cellular immune responses when compared to adults, resulting in increased susceptibility to infection. However, it is clear that newborns are able to generate adult-like protective T cell responses under certain conditions. The focus of our research is to understand the deficiencies within the neonatal immune system that lead to improper cellular responses and how priming conditions can be altered to elicit the appropriate T cell response necessary to protect against development of pathogen-induced disease. With these goals in mind, we are exploring the attributes of neonatal T cells and their development, as well as the conditions during priming that influence the resulting response to immune challenge during the neonatal period.

Key Words

Neonates Mouse T lymphocytes Virus Cellular immunity T cell repertoire T cell priming Type 1/Type 2 responses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mulholland K: Seriousinfection sin young infants in developing countries. Vaccine 1998;16:1360–1362.PubMedCrossRefGoogle Scholar
  2. 2.
    Wright PF: Infectious diseases in early life in industrialized countries. Vaccine 1998;16:1355–1359.PubMedCrossRefGoogle Scholar
  3. 3.
    Recommended Childhood Immunization Schedule. 1999; Centers for Disease Control, US.Google Scholar
  4. 4.
    Bona CA (ed): Neonatal Immunoresponsiveness. Int Rev Immunol 2000;19:139–288.Google Scholar
  5. 5.
    Spier RE (ed): Immunity in Early Life. Vaccine 1998;16:1351–1486.Google Scholar
  6. 6.
    Hassan J, Reen DJ: Cord blood CD4+CD45 RA+ T cells achieve a lower magnitude of activation when compared with their adult counterparts. Immunology 1997; 90:397–401.PubMedCrossRefGoogle Scholar
  7. 7.
    Piguet PF, Irle C, Kollatte E, Vassalli P: Post-thymic T lymphocyte maturation during ontogenesis. J Exp Med 1981;154:581–593.PubMedCrossRefGoogle Scholar
  8. 8.
    Adkins B, Hamilton K: Freshly isolated, murine neonatal T cells produce IL-4 in response to anti-CD3 stimulation. J Immunol 1992; 149:3448–3455.PubMedGoogle Scholar
  9. 9.
    Barbey C, Irion O, Helg C, Chapuis B, Grand C, Chizzolini C, et al.: Characte rization of the cytotoxic alloresponse of cord blood. Bone Marrow Transplant 1998;22: S26-S30.PubMedGoogle Scholar
  10. 10.
    Splawski JB, Jelinek DF, Lipsky PE: Delineation of the functional capacity of human neonatal lymphocytes. J Clin Invest 1991;87: 545–553.PubMedGoogle Scholar
  11. 11.
    Sarzotti M, Robbins DS, Hoffman PM: Induction of protective CTL responses in newborn mice by a murine retrovirus. Science 1996; 271:1726–1728.PubMedCrossRefGoogle Scholar
  12. 12.
    Ridge JP, Fuchs EJ, Matzinger P: Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 1996;271: 1723–1726.PubMedCrossRefGoogle Scholar
  13. 13.
    Forsthuber T, Yip HC, Lehmann PV: Induction of TH1 and TH2 immunity in neonatal mcie. Science 1996;271:1728–1730.PubMedCrossRefGoogle Scholar
  14. 14.
    Martinez X, Brandt C, Saddallah F, Tougne C, Barrios C, Wild F, et al.: DNA immunization circumvents deficient induction of T helper type 1 and cytotoxic T lymphocyte resporses in neonates and during early life. Proc natl Acad Sci USA 1997;94: 8726–8731.PubMedCrossRefGoogle Scholar
  15. 15.
    Bot A, Bot S, Garcia-Sastre A, Bona C: Protective cellular immunity against influenza virus induced by plasmid inoculation of newborn mice. Dev Immunol 1998;5:197–210.PubMedGoogle Scholar
  16. 16.
    Sarzotti M, Dean TA, Remington MP, Ly CD, Furth PA, Robbins DS: Induction of cytotoxic T cell responses in newborn mice by DNA immunization. Vaccine 1997;15:795–797.PubMedCrossRefGoogle Scholar
  17. 17.
    Brazolot Millan CL, Weeratna R, Krieg AM, Siegrist CA, Davis HL: CpG DNA can induce strong Th1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proc Natl Acad Sci U S A 1998; 95:15,553–15,558.CrossRefGoogle Scholar
  18. 18.
    Marchant A, Goetghebuer T, Ota MO, Wolfe I, Ceesay SJ, De Groote D, et al.: New borns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette-Guerin vaccination. J Immunol 1999;163:2249–2255.PubMedGoogle Scholar
  19. 19.
    Jolicoeur P, Nicolaiew N, Des-Groseillers L, Rasart E: Molecularcloning of infectious viral DNA from ecotropic neurotropic wild mouse retrovirus. J Virol 1983;45: 1159–1163.PubMedGoogle Scholar
  20. 20.
    Hoffman PM, Davidson WF, Ruscetti SK, Chused TM, Morse HC 3d: Wild mouse ecotropic murine leukemia virus infection of inbred mice: dual-tropic virus expression precedes the onset of paralysis and lymphoma. J Virol 1981;39:597–602.PubMedGoogle Scholar
  21. 21.
    Robbins DS, Hoffman PM: Virusspecific cytotoxic lymphocyte response in a neurotropic murine leukemia virus infection. J Neuroimmunol 1991;31:9–17.PubMedCrossRefGoogle Scholar
  22. 22.
    Sarzotti M, Robbins DS, Hoffman PM: IFN-gamma production in response to neuropathogenic Cas-Br-M murine leukemia virus infection. Viral Immunol 1993;6: 207–217.PubMedGoogle Scholar
  23. 23.
    Hoffman PM, Robbins DS, Morse HC 3d: Role of immunity in agerelated resistance to paralysis after murine leukemia virus infection. J Virol, 1984;52:734–738.PubMedGoogle Scholar
  24. 24.
    Born W, Yague J, Palmer E, Kappler J, Marrack P: Rearrangement of T-cell receptor beta-chain genes during T-cell development. Proc Natl Acad Sci USA 1985;82: 2925–2929.PubMedCrossRefGoogle Scholar
  25. 25.
    Snodgrass HR, Kisielow P, Kiefer M, Steinmetz M, von Boehmer H: On togeny of the T-cell antigen receptorwithin the thymus. Nature 1985;313:592–595.PubMedCrossRefGoogle Scholar
  26. 26.
    Davis MM, Bjorkman PJ: T-cell antigen receptor genes and T-cell reco gnition. Nature 1988;334: 395–402.PubMedCrossRefGoogle Scholar
  27. 27.
    Komori T, Okada A, Stewart V, Alt FW: Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 1993;261:1171–1175.PubMedCrossRefGoogle Scholar
  28. 28.
    Bogue M, Candeias S, Benoist C, Mathis D: A special repertoire of alpha: beta T cells in neonatal mice. EMBO J 1991;10:3647–3654.PubMedGoogle Scholar
  29. 29.
    Pannetier C, Cochet M, Darche S, Casrouge A, Zoller M, Kourilsky P: The sizes of the CDR3 hypervariable regions of the murine T-cell receptor beta chains vary as a function of the recombined germline segments. Proc Natl Acad Sci USA 1993;90:4319–4323.PubMedCrossRefGoogle Scholar
  30. 30.
    Gilfillan S, Dierich A, Lemeur M, Benoist C, Mathis D: Mice lacking TdT: mature animals with an immature lymphocyte repertoire. Science 1993;261:1175–1178.PubMedCrossRefGoogle Scholar
  31. 31.
    Rothenberg E, Triglia D: Clonal proliferation unlinked to terminal teoxynucleotidyl transferase synthesis in thymocytes of youngmice. J Immunol 1983;130: 1627–1633.PubMedGoogle Scholar
  32. 32.
    Gilfillan S, Bachmann M, Trembleau S, Adorini L, Kalinke U, Zinkernagel R, et al.: Efficient immuni responses in mice lacking N-region diversity. Eur J Immunol 1995;25:3115–3122.PubMedCrossRefGoogle Scholar
  33. 33.
    Sourdive DJ, Murali-Krishna K, Altman JD, Zajac AJ, Whitmire JK, et al.: Conserved T cell receptor repertoire in primary and memory CD8 T cell responses to an acute viral infection. J Exp Med 1998; 188:71–82.PubMedCrossRefGoogle Scholar
  34. 34.
    Levraud JP, Pannetier C, Langlade-Demoyen P, Brichard V, Kourilsky P: Recurrent T cell receptor rearrangements in the cytotoxic T lymphocyte response in vivo against the P815 murine tumor. J Exp Med 1996;183:439–449.PubMedCrossRefGoogle Scholar
  35. 35.
    Fadel S, Cao S, Sarzotti M: T cell receptor Vßusage in T cell memory responses of mice immunized as neonates with low or high doses of virus. FASEB J 2000;14:A993.Google Scholar
  36. 36.
    Kelly KA, Scollay R: Seeding of neonatal lymph nodes by T cells and identification of a novel population of CD3CD4+ cells. Eur J Immunol 1992;22:329–334.PubMedCrossRefGoogle Scholar
  37. 37.
    Adkirs B, Du RQ: Newbom mice develop balanced Th1/Th2 primary effector responses in vivo but are biased to Th2 secondary responses. J Immunol 1998;160: 4217–4224.Google Scholar
  38. 38.
    Constant S, Pfeiffer C, Woodard A, Pasqualini T, Bottomly K: Extent of T cell receptor ligation can detennine the functional differentiation of naive CD4+T cells. J Exp Med 1995;182:1591–1596.PubMedCrossRefGoogle Scholar
  39. 39.
    Parish CR: The relationship between humoral and cellmediated immunity. Transplant Rev 1972;13:35–66.PubMedGoogle Scholar
  40. 40.
    Burstein HJ, Shea CM, Abbas AK: Aqueous antigens induce in vivo tolerance selectively in IL-2- and IFN-gamma-producing (Th1) cells. J Immunol 1992;148: 3687–3691.PubMedGoogle Scholar
  41. 41.
    Bretscher PA, Wei G, Menon JN, Bielefeldt-Ohmann H: Establishment of stable, cell-mediated immunity thatmakes “susceptible” mice resistant to Leishmania major. Science 1992;257:539–542.PubMedCrossRefGoogle Scholar
  42. 42.
    Hosken NA, Shibuya K, Heath AW, Murphy KM, O'Garra A: The effect of antigen dose on CD4+ T helpercell phenotype development in a T cell receptor-alpha betatransgenic model. J Exp Med 1995;182:1579–1584.PubMedCrossRefGoogle Scholar
  43. 43.
    Power CA, Wei G, Bretscher PA: Mycobacterial dose defines the Th1/Th2 nature of the immune response independently of whether immunization is administered by the intravenous, subcutaneous, or intradermal route. Infect Immun 1998;66:5743–5750.PubMedGoogle Scholar
  44. 44.
    Cerasoli D, Kelsoe G, Sarzotti M: CD4+ ThylThymocytes with a Thelper Type-2Cy tokine Response. Int Immunol 2001;13:75–83.PubMedCrossRefGoogle Scholar
  45. 45.
    Sarzotti M, Dean TA, Remington M, Hoffman PM: Ultraviolet-lightinactivated Cas-Br-M murine leukemia virus induces a protective CD8+ cytotoxic T lymphocyte response in new born mice. AIDS Res Hum Retroviruses 1994;10: 1695–1702.PubMedGoogle Scholar
  46. 46.
    Seder RA, Paul WE: Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol 1994;12:635–673.PubMedCrossRefGoogle Scholar
  47. 47.
    Desmedt M, Rottiers P, Dooms H, Fiers W, Grooten J: Macrophages induce cellular immunity by activating Th1 cell responses and suppressing Th2 cell responses. J Immunol 1998;160:5300–5308.PubMedGoogle Scholar
  48. 48.
    Kalinski, P, Hilkens CM, Snijders A, Snijdewint FG, Kapsenberg ML: IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J Immunol 1997;159:28–35.PubMedGoogle Scholar
  49. 49.
    Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, et al.: Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999;283:1183–1186.PubMedCrossRefGoogle Scholar
  50. 50.
    Petty RE, Hunt DW: Neonatal dendritic cells. Vaccine 1998;16: 1378–1382.PubMedCrossRefGoogle Scholar
  51. 51.
    Taylor S, Bryson YJ: Impaired production of gamma-interferon by newborn cells in vitro is due to a functionally immature macrophage. J Immunol 1985;134: 1493–1497.PubMedGoogle Scholar
  52. 52.
    Trivedi HN, HayGlass KT, Gangur V, Allardice JG, Embree JE, Plummer FA: Analysis of neonatal T cell and antigen presenting cell functions. Hum Immunol 1997;57: 69–79.PubMedCrossRefGoogle Scholar
  53. 53.
    Bot A, Antohi S, Bora C: Immune response of neonates elicited by somatic transgene vaccination with naked DNA. Front Biosci 1997; 2:d173–188.Google Scholar
  54. 54.
    Morris JF, Hoyer JT, Pierce SK: Antigen presentation for T cell interleukin-2 secretion is a late acquisition of neonatal B cells. Eur J Immunol 1992;22:2923–2928.PubMedCrossRefGoogle Scholar
  55. 55.
    Tasker L, Marshall-Clarke S: Immature B cells from neonatal mice show a selective inability to up-regulate MHC class II expression in response to antigen receptor ligation. Int Immunol 1997;9: 475–484.PubMedCrossRefGoogle Scholar
  56. 56.
    Schibler KR, Liechty KW, White WL, Rothstein G, Christensen RD: Defective production of interleukin-6 by monocytes: a possible mechanism underlying several host defense deficiencies of neonates. Pediatr Res 1992;31: 18–21.PubMedCrossRefGoogle Scholar
  57. 57.
    Suen Y, Lee SM, Qian J, van de Ven C, Cairo MS: Dysregulation of lymphokine production in the neonate and its impact on neonatal cell mediated immunity. Vaccine 1998;16:1369–1377.PubMedCrossRefGoogle Scholar
  58. 58.
    Johnston RB Jr: Function and cell biology of neutrophils and mononuclear phagocytes in the new born infant. Vaccine 1998; 16:1363–1368.PubMedCrossRefGoogle Scholar
  59. 59.
    Yip HC, Karulin AY, Tary-Lehmann M, Hesse MD, Radeke H, Heeger PS, et al.: Adjuvant-guided type-1 and type-2 immunity: infectious/noninfectious dichtomy defines the class of response. J Immunol 1999;162: 3942–2949.PubMedGoogle Scholar
  60. 60.
    Fearon DT: Seeking wisdom in innate immunity. Nature 1997;388: 323–324.PubMedCrossRefGoogle Scholar
  61. 61.
    Liu HM, Newbrough SE, Bhatia SK, Dahle CE, Krieg AM, Weiner GJ: Immunostimulatory CpG oligodeoxy nucleotides enhance the immune response to vaccine strategies involving granulocyte-macrophage colony-stimulating factor. Blood 1998;92:3730–3736.PubMedGoogle Scholar
  62. 62.
    McCluskie MJ, Weeratna RD, Davis HL: The role of CpG in DNA vaccines. Springer Semin Immunopathol 2000;22:125–132.PubMedCrossRefGoogle Scholar
  63. 63.
    Tascon RE, Ragno S, Lowrie DB, Colston MJ: Immunostimulatory bacterial DNA sequences activate dendritic cells and promote priming and differentiation of CD8+T cells. Immunology 2000;99:1–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Bot A, Bot S, Garcia-Sastre A, Bona C: DNA immunization of newborn mice with a plasmid-expressing nucleo protein of influenza virus. Viral Immunol 1996;9:207–210.PubMedCrossRefGoogle Scholar
  65. 65.
    Hassett DE, Zhang J, Whitton JL: Neonatal DNA immunization with a plasmid encoding an internal viral protein is effective in the presence of maternal antibodies and protects against subsequent viral challenge. J Virol 1997;71: 7881–7888.PubMedGoogle Scholar
  66. 66.
    Robbins DS, Remington MP, Sarzotti M, St. Louis D, Hoffman PM: Immunogenic determinants of a neuropathogenic murine leukemia virus. J Virol 1995;69:6847–6851.PubMedGoogle Scholar
  67. 67.
    Butts C, Zubkoff I, Robbins DS, Cao S, Sarzotti M: DNA immunization of infants: potential and limitations. Vaccine 1998;16: 1444–1449.PubMedCrossRefGoogle Scholar
  68. 68.
    Iwasaki A, Stiernholm BJ, Chan AK, Berinstein NL, Barber BH: Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol 1997; 158:4591–4601.PubMedGoogle Scholar
  69. 69.
    Weiss WR, Ishii KJ, Hedstrom RC, Sedegah M, Ichino M, Barnhart K, et al.: A plasmid encoding murine granulocyte-macrophage colony-stimulating factor increases protection conferred by a malaria DNA vaccine. J Immunol 1998; 161:2325–2332.PubMedGoogle Scholar
  70. 70.
    Ishii KJ, Weiss WR, Klinman DM: Prevention of neonatal tolerance by a plasmid encoding granulocyte-macrophage colony stimulating factor. Vaccine, 1999;18: 703–710.PubMedCrossRefGoogle Scholar
  71. 71.
    Lee SM, Suen Y, Qian J, Knoppel E, Cairo MS: The regulation and biological activity of interleukin 12. Leuk Lymphoma 1998;29: 427–438.PubMedGoogle Scholar
  72. 72.
    Arulanandam BP, Van Cleave VH, Metzger DW: IL-12 is a potent neonatal vaccine adjuvant. Eur J Immunol 1999;29:256–264.PubMedCrossRefGoogle Scholar
  73. 73.
    Arulanandam BP, Mittler JN, Lee WT, O'Toole M, Metzger DW: Neonatal administration of IL-12 enhances the protective efficacy of antiviral vaccines. J Immunol 2000;164:3698–3704.PubMedGoogle Scholar
  74. 74.
    Adkins B, Bu Y, Cepero E, Perez R: Exclusive Th2 primary effector function in spleens but mixed Th1/Th2 function in lymph nodes of murine neonates. J Immunol 2000;164:2347–2353.PubMedGoogle Scholar
  75. 75.
    Donckier V, Flamand V, Desalle F, Vanderhaeghen ML, de Veeman M, Thielemans K, et al.: IL-12 prevents neonata 1 induction of transplantation tolerance in mice. Eur J Immunol 1998;28:1426–1430.PubMedCrossRefGoogle Scholar
  76. 76.
    Mancuso G, Cusumano V, Genovese F, Gambuzza M, Beninati C, Teti G: Role of interleukin 12 in experimental neonatal sepsis caused by group B streptococci. Infect Immun 1997;65:3731–3735.PubMedGoogle Scholar
  77. 77.
    Urban JF Jr, Fayer R, Chen SJ, Gause WC, Gately MK, Finkelman FD: IL-12 protects immunocompetent and immunodeficient neonatal mice against infection with Cryptosporidium parvum. J Immunol 1996;156:263–268.PubMedGoogle Scholar
  78. 78.
    Chu RS, Targoni OS, KriegAM, Lehmann PV, Harding, CV: CpG oligodeoxy nucleotides actasadjuvants that switch on T helper 1 (Th1) immunity. J Exp Med 1997;186:1623–1631.PubMedCrossRefGoogle Scholar
  79. 79.
    Sparwasser T, Koch ES, Vabulas RM, Heeg K, Lipford GB, Ellwart JW, et al.: Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 1998;28: 2045–2054.PubMedCrossRefGoogle Scholar
  80. 80.
    Behboudi S, Chao D, Klenerman P, Austyn J: The effects of DNA containing CpG motif ondendritic cells. Immunology 2000;99: 361–366.PubMedCrossRefGoogle Scholar
  81. 81.
    Grewall S, Flavell RA: The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev 1996;153:85–106.CrossRefGoogle Scholar
  82. 82.
    Nonoyama S, Penix LA, Edwards CP, Lewis DB, Ito S, Aruffo A, et al.: Diminished expression of CD40 ligand by activated neonatal T cells. J Clin Invest 1995; 95:66–75.PubMedCrossRefGoogle Scholar
  83. 83.
    Durandy A, De Saint Basile G, Lisowska-Grospierre B, Gauchat JF, Forveille M, Kroczek RA, et al.: Undetectable CD40 ligand expression on T cells and low B cell responses to CD40 binding agonists in human newborns. J Immunol 1995;154:1560–1568.PubMedGoogle Scholar
  84. 84.
    Elliott SR, Roberton DM, Zola H, Macardle PJ: Expression of the costimulator molecules, CD40 and CD154, on lymphocytes from neonates and young children. Hum Immunol 2000;61:378–388.PubMedCrossRefGoogle Scholar
  85. 85.
    Flamand V, Donckier V, Demoor FX, Le Moine A, Matthys P, Vanderhaeghen ML, et al.: CD40 ligation prevents neonatal induction of transplantation tolerance. J Immunol 1998;160:4666–4669.PubMedGoogle Scholar
  86. 86.
    Hassan J, O'Neill S, O'Neill LA, Pattison U, Reen DJ: Signalling via CD28 of human naive neonatal T lymphocytes. Clin Exp Immunol 1995;102:192–198.PubMedCrossRefGoogle Scholar
  87. 87.
    Adkins B, Ghanei A, Hamilton K: Up-regulation of murine neonatal T helper cell responses by accessory cell factors. J Immunol 1994; 153:3378–3385.PubMedGoogle Scholar
  88. 88.
    Adkins, B: T-cell function in newborn mice and humans. Immunol Today 1999;20:330–335.PubMedCrossRefGoogle Scholar
  89. 89.
    Hayward A, Leibson P, Arvin A: Development of lymphocyte responses to herpes simplex virus following neonatal infection. In: Burgio G, Hanson L, Ugazio A (eds): Immunology of the neonate, Berlin, Springer-Verlag, 1987, pp. 112–119.Google Scholar
  90. 90.
    Wilson CB: Immunologic basis for increased susceptibility of the neonate to infection. J Pediatr 1986;108:1–12.PubMedCrossRefGoogle Scholar
  91. 91.
    Chilmonczyk BA, Levin MJ, McDuffy R, Hayward AR: Characterization of the human newborn response to herpesvirus antigen. J Immunol 1985;134:4184–4188.PubMedGoogle Scholar
  92. 92.
    Hayward AR, Herberger MJ, Groothuis J, Levin MR: Specific immunity after congenitalor neonatal infection with cytomegalo virus or herpes simplex virus. J Immunol 1984;133:2469–2473.PubMedGoogle Scholar
  93. 93.
    Hoffman PM, Ruscetti SK, Morse HC 3d: Pathogenesis of paralysis and lymphoma associated with a wild mouse retrovirus infection. Part 1. Age- and dose-related effects in susceptible laboratory mice. J Neuroimmunol 1981;1:275–285.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • Annie M. Garcia
    • 1
  • Shaza A. Fadel
    • 1
  • Shui Cao
    • 1
  • Marcella Sarzotti
    • 1
  1. 1.Department of ImmunologyDube University Medical CenterDurham

Personalised recommendations