Skip to main content
Log in

Factors that influence formation of B cell repertoire

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

V, D, and J gene segments rearrange at different frequencies in vivo. In my laboratory, we are interested in determining the reasons for this unequal rearrangement of V genes during B cell development, and also in gaining insights into the mechanisms that control recombination. Every V, D, and J gene segment is flanked on its recombining side(s) by a recombination signal sequence (RSS), which is composed of a conserved heptamer and nonamer, separated by a spacer of conserved length. In this article, we summarize data showing that in many cases the RSS can account for differences in recombination frequencies observed in vivo. The approach that we use is to determine the frequency of initial rearrangement of the V genes in vivo. The RSSs of two V genes are then placed into a competition recombination substrate to determine the relative frequency with which the two RSSs recombine. In one example, we have shown that a single base pair polymorphism in the RSS of a Vκ gene may play a major role in susceptibility ot Haemophilus influenzae type b infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tonegawa S: Somatic generation of antibody diversity. Nature 1983;14:575–581.

    Article  Google Scholar 

  2. Schäble KF, Zachau HG: The variable genes of the human immunoglo bulin κ locus. Biol Chem Hoppe-Seyler 1993;374: 1001–1022.

    PubMed  Google Scholar 

  3. Weichhold GM, Ohnheiser R, Zachau HG: The human immunoglobulin κ locus consists of two copies that are organized in opposite polarity. Genomics 1993;16: 503–511.

    Article  PubMed  CAS  Google Scholar 

  4. Feeney AJ, Lugo G, Escuro G: Human cord blood κ repertoire. J Immunol 1997:158:3761–3768.

    PubMed  CAS  Google Scholar 

  5. Klein R, Jaenichen R, Zachau HG: Expressed human immunoglobulin κ genes and their hypermutation. Eur J Immunol 1993:23: 3248–3271.

    Article  PubMed  CAS  Google Scholar 

  6. Cox JPL, Tomtlinson IM, Winter G: A directory of human germ-line Sκ segments reveals a strong bias in their usage. Eur J Immunol 1994; 24:827–836.

    Article  PubMed  CAS  Google Scholar 

  7. Foster SF, Brezinschek H-P, Brezinschek RI, Lipsky PE: Molecular mechanisms and selective influences that shape the kappa gene repertoire of IgM+ cells. J Clin Invest 1997;99:1614–1627.

    PubMed  CAS  Google Scholar 

  8. Akira S, Okazaki K, Sakano H: Two pairs of recombination signals are sufficient to cause immunoglobulin V-(D)-J joining. Science 1987;238:1134–1138.

    Article  PubMed  CAS  Google Scholar 

  9. Hesse JE, Lieber MR, Mizuuchi K, Gellert M: V (D) J recombination: a functional de finition of the joining signals. Genes Dev 1989;3: 1053–1061.

    PubMed  CAS  Google Scholar 

  10. Schroeder HW Jr, Hillson JL, Perlmutter RM: Structure and evolution of mammalian Vh families. Int Immunol 1990;2:41–50.

    Article  PubMed  Google Scholar 

  11. Ramsden DA, Paige CJ, Wu GE: κ light chain rearrangement in mouse fetal liver. J Immunol 1994;153:1150–1160.

    PubMed  CAS  Google Scholar 

  12. Connor AM, Fanning LJ, Celler JW, Hicks LK, Ramsden DA, Wu GE: Mouse VH7183 recombination signal sequences mediate recombination more frequently than those of VH3558. J Immunol 1995;155:5268–5272.

    PubMed  CAS  Google Scholar 

  13. Nadel B, Tang A, Lugo G, Love V, Escuro G, Feeney AJ: Decreased frequency of rearrangement due to synergistic effect of nucleotide changes in the heptamer and nonamer of the recombination signal sequence of the Vκ gene A2b, which is associated with increased susceptibility of Navajosto Haemophilus influenzae type b disease. J Immunol 1998;161:6068–6073.

    PubMed  CAS  Google Scholar 

  14. Yu CCK, Larijani M, Miljanic IN, Wu GE: Differential usage of VH gene segments is mediated by cis elements. J Immunol 1998;161: 3444–3454.

    PubMed  CAS  Google Scholar 

  15. Nadel B, Tang A, Escuro G, Lugo G, Feeney AJ: Sequence of the spacer in the RSS affects V(D)J rearrangement frequency and correlates with non-random Vκ usage in vivo. J Exp Med 1998;187: 1495–1503.

    Article  PubMed  CAS  Google Scholar 

  16. Hesse JE, Lieber MR, Gellert M, Mizuuchi K: Extrachromosomal DNA substrates in pre-B cells undergo inversion or deletion at immunoglobulin V-(D)-J joining signals. Cell 1987;49:775–783.

    Article  PubMed  CAS  Google Scholar 

  17. Atkinson MJ, Cowan MJ, Feeney AJ: New alleles of 1GKV genes A2 and A18 suggest significant polymorphism of the human IGKV locus. Immunogenetics 1996;44: 115–120.

    Article  PubMed  CAS  Google Scholar 

  18. Insel RA, Kittelberger A, Anderson P: Isoelectic focusing of human antibody to the Haemophilus influenzae type b capsular polysaccharide: restricted and identical spectrotypes in adults. J Immunol 1985;135:2810–2816.

    PubMed  CAS  Google Scholar 

  19. Lucas AH, Langley RJ, Granoff DM, Nahm MH, Kitamura MY, Scott MG: An idiotypic marker associated with a germ-line encoded κ light chain variable region that predominates the vaccine-induced human antibody response to the Haemophilus influenzae b poly saccharide. J Clin Invest 1991;88:1811–1818.

    PubMed  CAS  Google Scholar 

  20. Adderson EE, Shackelford PG, Quinn A, Wilson PM, Carroll WL: Diversity of immunoglobulin light chain usage in the human immune response to Haemophilus influenzae type b capsular polysaccharide. Pediatr Res 1993;33: 307–311.

    Article  PubMed  CAS  Google Scholar 

  21. Adderson EE, Shackelford PG, Quinn A, Wilson PM, Cunningham MW, Insel RA, Carroll WL: Restricted immunoglobulin VH usage and VDJ combinations in the human response to Haemophilus influenzae type b capsular polysaccharide. J Clin Invest 1993;91: 2734–2743.

    PubMed  CAS  Google Scholar 

  22. Scott MG, Crimmins DL, McCourt DW, Chung G, Schable KF, Thiebe R, Quenzel EM, Zachau HG, Nahm MH: Clonal characterization of the human IgG antibody repertoire to Haemophilus influenzae type b polysaccharide. IV. The less frequently expressed VL are heterogenous. J Immunol 1991;147: 4007–4013.

    PubMed  CAS  Google Scholar 

  23. Petersen GM, Silimperi DR, Rotter JI, Terasaki PI, Schanfield MS, Park MS, Ward JI. Genetic factors in Haemophilus influenzae type b diseasesusceptibility andantibody acquisition. J Pediatr 1987;110: 228–233.

    Article  PubMed  CAS  Google Scholar 

  24. Losonsky GA, Santosham M, Sehgal VM, Zwahlen A, Moxon ER: Haemophilus influenzae disease in the While Mountain Apaches: molecularepidemiology of a high risk population. Pediatr Infect Dis 1985;3:539–547.

    Google Scholar 

  25. Feeney AJ, Atkinson MJ, Cowan MJ, Escuno G, Lugo G: A defective VκA 2allele in Navajos which may play a role in increased susceptibility to Haemophilus influenzae type b disease. J Clin Invest 1996;97:2277–2282.

    Article  PubMed  CAS  Google Scholar 

  26. Scott MG, Crimmins DL, McCourt DW, Zocher I, Thiebe R, Zachau HG, Nahm MH: Clonal characterization of the human IgG antibody repertoire to Haemophilus influenzae type b polysaccharide III. A single VκII gene and one of several Jκ genes are joined by an invariant arginine to form the most common L chain V region. J Immunol 1989;143:4110–4116.

    PubMed  CAS  Google Scholar 

  27. Feeney AJ: Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J Exp Med 1990;172: 1377–1390.

    Article  PubMed  CAS  Google Scholar 

  28. Feeney AJ: Predominance of the prototypic T15 anti-phosphory l-choline junctional sequence in neonatal pre-B cells. J Immunol 1991;147:4343–4350.

    PubMed  CAS  Google Scholar 

  29. Kitamura D, Roes J, Kühn R, Rajewsky K: A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 1991;350:423–426.

    Article  PubMed  CAS  Google Scholar 

  30. Love VA, Lugo G, Merz D, Feeney AJ: Individual VH promoters vary in strength, but the frequency of rearrangement of those VH genes does not correlate with promoter strengthnorenhancer-independence. Mol Immunol, in press 2000.

  31. Gerstein RM, Lieber MR: Coding end sequence can markedly affect the initiation of V(D)J recombination. Genes Dev 1993;7: 1459–1469.

    PubMed  CAS  Google Scholar 

  32. Ezekiel UR, Engler P, Stern D, Storb U: Asymmetric processing of coding ends and the effect of coding end nucleotide composition on V(D)J recombination. Immunity 1995;2:381–389.

    Article  PubMed  CAS  Google Scholar 

  33. Ezekiel UR, Sun T, Bozek G, Storb U: The composition of coding joints formed in V(D)J recombination is strongly affected by the nucleotide sequence of the coding ends and their relationship to the recombination signal sequences. Mol Cell Biol 1997;17:4191–4197.

    PubMed  CAS  Google Scholar 

  34. Gauss GH, Lieber MR: The basis for the mechanistic bias for deletional over inversional V(D)J recombination. Genes Dev 1992;6: 1553–1561.

    PubMed  CAS  Google Scholar 

  35. Pan PY, Lieber MR, Teale JM: The role of recombination signal sequences in the preferential joining by delection in DH-JH recombination and in the ordered rearrangement of the IgH locus. Int Immunol 1997;9:515–522.

    Article  PubMed  CAS  Google Scholar 

  36. VanDy k LF, Wise TW, Moore BB, Meek K: Immunoglobulin DH recombination signal sequence targeting. J Immunol 1996:157

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feeney, A.J. Factors that influence formation of B cell repertoire. Immunol Res 21, 195–202 (2000). https://doi.org/10.1385/IR:21:2-3:195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:21:2-3:195

Key Words

Navigation