Skip to main content
Log in

Genome-Wide search for loss of heterozygosity in Chinese patients with sporadic colorectal cancer

  • Research Article
  • Published:
International Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

In an attempt to integrally investigate the loss of tumor suppressor genes and search for putative suppressor loci associated with tumor occurrence and progression, we conducted a genome-wide loss of heterozygosity (LOH) study of 83 tumor samples obtained from Chinese patients with sporadic colorectal cancer. We employed 400 fluorescence-labeled microsatellite marker primers to amplify the corresponding loci of the genomic DNA and then electrophoresed the polymerase chain reaction products and analyzed the fluorescent signals. The LOH frequencies were high (>35%) but were not associated with the tumor stage and progression in 20 loci, including the regions where TP53, E-cadherin, deleted in colorectal carcinoma (DCC), phosphatase and tensin homolog deleted on chromosome 10 (PTEN), mothers against decapentaplegic, Drosophila, homolog of 2 (MADH2) and mothers against decapentaplegic, Drosophila, homolog of 4 (MADH4) reside. Loss of other loci, including two narrow regions on chromosome 2, was found to relate to the tumor stage, suggesting that this genomic instability may contribute to tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rougier P, Mitry E. Epidemiology, treatment and chemoprevention in colorectal cancer. Ann Oncol 2003;Suppl 2:ii3–5.

    Google Scholar 

  2. Hawk ET, Limburg PJ, Viner JL. Epidemiology and prevention of colorectal cancer. Surg Clin North Am 2002;82(5):905–941.

    Article  PubMed  Google Scholar 

  3. Kinzler K, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1997;87:159–170.

    Article  Google Scholar 

  4. Fearson ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759–767.

    Article  Google Scholar 

  5. Vogelstein B, Fearon ER, Kern SE, et al. Allelotype of colorectal carcinomas. Science 1989;244(4901):207–211.

    Article  PubMed  CAS  Google Scholar 

  6. Fearon ER. Molecular genetics of colorectal cancer. Ann NY Acad Sci 1995;768:101–110.

    Article  PubMed  CAS  Google Scholar 

  7. Rothman RB, Mahboubi A, Reid AA, et al. [3H]1,3-Di (2-tolyl)guanidine labels two high affinity binding sites in guinea pig brain: evidence for allosteric regulation by calcium channel blockers and sigma ligands. NIDA Res Monogr 1991;105:335–336.

    Google Scholar 

  8. Lasko D, Cavenee W, Nordenskjold M. Loss of constitutional heterozygosity in human cancer. Annu Rev Genet 1991;25:281–314.

    Article  PubMed  CAS  Google Scholar 

  9. Solomon E, Voss R, Hall V, et al. Chromosome 5 allele loss in human colorectal carcinomas. Nature 1987;328(6131):616–619.

    Article  PubMed  CAS  Google Scholar 

  10. van der Bosch K, Becker I, Savelyeva L, et al. Deletions in the short arm of chromosome 8 are present in up to 90% of human colorectal cancer cell lines. Genes Chromosomes Cancer 1992;5(1):91–95.

    Article  PubMed  Google Scholar 

  11. Monpezat JP, Delattre O, Bernard A, et al. Loss of alleles on chromosome 18 and on the short arm of chromosome 17 in polyploid colorectal carcinomas. Int J Cancer 1988;41(3):404–408.

    Article  PubMed  CAS  Google Scholar 

  12. Lanza G, Matteuzzi M, Gafa R, et al. Chromosome 18q allelic loss and prognosis in stage II and III colon cancer. Int J Cancer 1998;79(4):390–395.

    Article  PubMed  CAS  Google Scholar 

  13. Weber TK, Conroy J, Keitz B, et al. Genome-wide allelo-typing indicates increased loss of heterozygosity on 9p and 14q in early age of onset colorectal cancer. Cytogenet Cell Genet 1999;86(2):142–147.

    Article  PubMed  CAS  Google Scholar 

  14. Zhou CZ, Peng ZH, Zhang F, et al. Loss of heterozygosity on long arm of chromosome 22 in sporadic colorectal carcinoma. World J Gastroenterol 2002;8(4):668–673.

    PubMed  CAS  Google Scholar 

  15. Stella A, Resta N, Gentile M, et al. Exclusion of the APC gene as the cause of a variant form of familial adenomatous polyposis (FAP). Am J Hum Genet 1993;53(5):1031–1037.

    PubMed  CAS  Google Scholar 

  16. Isobe M, Emanuel BS, Givol D, et al. Localization of gene for human p53 tumour antigen to band 17p13. Nature 1986;320(6057):84–85.

    Article  PubMed  CAS  Google Scholar 

  17. Cho KR, Oliner JD, Simons JW, et al. The DCC gene: structural analysis and mutations in colorectal carcinomas. Genomics 1994;19(3):525–531.

    Article  PubMed  CAS  Google Scholar 

  18. Hou L, Ji BT, Aaron B, et al. Body mass index, physical activity and risk of colon cancer in Shanghai, China. Ann Epidemiol 2003;13(8):560–561.

    Article  Google Scholar 

  19. You WC, Jin F, Devesa S, et al. Rapid increase in colorectal cancer rates in urban Shanghai, 1972–97, in relation to dietary changes. J Cancer Epidemiol Prev 2002;7(3):143–146.

    PubMed  Google Scholar 

  20. Wang NM, Yeh KT, Tsai CH, et al. No evidence of correlation between mutation at codon 531 of src and the risk of colon cancer in Chinese. Cancer Lett 2000;150(2):201–204.

    Article  PubMed  CAS  Google Scholar 

  21. Zheng S. Recent study on colorectal cancer in China: early detection and novel related gene. Chin Med J (Engl) 1997;110(4):309–310.

    CAS  Google Scholar 

  22. Qing SH, Rao KY, Jiang HY, et al. Racial differences in the anatomical distribution of colorectal cancer: a study of differences between American and Chinese patients. World J Gastroenterol 2003;9(4):721–725.

    PubMed  Google Scholar 

  23. Sieben NL, ter Haar NT, Cornelisse CJ, et al. PCR artifacts in LOH and MSI analysis of microdissected tumor cells. Hum Pathol 2000;31(11):1414–1419.

    Article  PubMed  CAS  Google Scholar 

  24. Vasen HF, Griffioen G, Offerhaus GJ, et al. The value of screening and central registration of families with familial adenomatous polyposis. A study of 82 families in The Netherlands. Dis Colon Rectum 1990;33(3):227–230.

    Article  PubMed  CAS  Google Scholar 

  25. Vasen HF, Watson P, Mecklin JP, et al. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 1999;116(6):1453–1456.

    Article  PubMed  CAS  Google Scholar 

  26. Blin N, Stafford DW. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 1976;3(9):2303–2308.

    PubMed  CAS  Google Scholar 

  27. Kinzler KW, Nilbert MC, Vogelstein B, et al. Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science 1991;251(4999):1366–1370.

    Article  PubMed  CAS  Google Scholar 

  28. Hardy RG, Meltzer SJ, Jankowski JA. ABC of colorectal cancer. Molecular basis for risk factors. BMJ 2000;321(7265):886–889.

    Article  PubMed  CAS  Google Scholar 

  29. Boland CR, Sato J, Saito K, et al. Genetic instability and chromosomal aberrations in colorectal cancer: a review of the current models. Cancer Detect Prev 1998;22(5):377–382.

    Article  PubMed  CAS  Google Scholar 

  30. Stanbridge EJ. Identifying tumor suppressor genes in human colorectal cancer. Science 1990;247(4938):12–13.

    Article  PubMed  CAS  Google Scholar 

  31. Paredes-Zaglul A, Kang JJ, Essig YP, et al. Analysis of colorectal cancer by comparative genomic hybridization: evidence for induction of the metastatic phenotype by loss of tumor suppressor genes. Clin Cancer Res 1998;4(4):879–886.

    PubMed  CAS  Google Scholar 

  32. Berney CR, Fisher RJ, Yang J, et al. Genomic alterations (LOH, MI) on chromosome 17q21–23 and prognosis of sporadic colorectal cancer. Int J Cancer 2000;89(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  33. Bieche I, Khodja A, Lidereau R. Deletion mapping in breast tumor cell lines points to two distinct tumor-suppressor genes in the 1p32-pter region, one of deleted regions (1p36.2) being located within the consensus region of LOH in neuroblastoma. Oncol Rep 1998;5(1):267–272.

    PubMed  CAS  Google Scholar 

  34. van der Heijden O, Chiu HC, Park TC, et al. Allelotype analysis of uterine leiomyoma: localization of a potential tumor suppressor gene to a 4-cM region of chromosome 7q. Mol Carcinog 1998;23(4):243–247.

    Article  PubMed  Google Scholar 

  35. Sato T, Tanigami A, Yamakawa K, et al. Allelotype of breast cancer: cumulative allele losses promote tumor progression in primary breast cancer. Cancer Res 1990;50(22):7184–7189.

    PubMed  CAS  Google Scholar 

  36. Parrella P, Sidransky D, Merbs SL. Allelotype of posterior uveal melanoma: implications for a bifurcated tumor progression pathway. Cancer Res 1999;59(13):3032–3037.

    PubMed  CAS  Google Scholar 

  37. Gyapay G, Morissette J, Vignal A, et al. The 1993–94 Genethon human genetic linkage map. Nat Genet 1994;7:246–399.

    Article  PubMed  CAS  Google Scholar 

  38. Bapat BV, Madlensky L, Temple LK, et al. Family history characteristics, tumor microsatellite instability and germline MSH2 and MLH1 mutations in hereditary colorectal cancer. Hum Genet 1999;104(2):167–176.

    Article  PubMed  CAS  Google Scholar 

  39. Sozzi G, Veronese ML, Negrini M, et al. The FHIT gene 3p14.2 is abnormal in lung cancer. Cell 1996;85(1):17–26.

    Article  PubMed  CAS  Google Scholar 

  40. Powell SM, Zilz N, Beazer-Barclay Y, et al. APC mutations occur early during colorectal tumorigenesis. Nature 1992;359:235–237.

    Article  PubMed  CAS  Google Scholar 

  41. Nakamura Y, Lathrop M, Leppert M, et al. Localization of the genetic defect in familial adenomatous polyposis within a small region of chromosome 5. Am J Hum Genet 1988;43(5):638–644.

    PubMed  CAS  Google Scholar 

  42. Hoshino Y, Horikawa I, Oshimura M, et al. Normal human chromosome 5, on which a familial adenomatous polyposis gene is located, has tumor suppressive activity. Biochem Biophys Res Commun 1991;174(1):298–304.

    Article  PubMed  CAS  Google Scholar 

  43. Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997;275:1943–1946.

    Article  PubMed  CAS  Google Scholar 

  44. Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997;15(4):356–362.

    Article  PubMed  CAS  Google Scholar 

  45. Ilyas M, Tomlinson IP, Hanby A, et al. Allele loss, replication errors and loss of expression of E-cadherin colorectal cancers. Gut 1997;40:654–659.

    PubMed  CAS  Google Scholar 

  46. Berx G, Staes K, van Hengel J, et al. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics 1995;26(2):281–289.

    Article  PubMed  CAS  Google Scholar 

  47. Tarafa G, Villanueva A, Farre L, et al. DCC and SMAD4 alterations in human colorectal and pancreatic tumor dissemination. Oncogene 2000;19:546–555.

    Article  PubMed  CAS  Google Scholar 

  48. Eppert K, Scherer SW, Ozcelik H, et al. MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 1996;86(4):543–552.

    Article  PubMed  CAS  Google Scholar 

  49. Nakao A, Roijer E, Imamura T, et al. Identification of Smad2, a human Mad-related protein in the transforming growth factor beta signaling pathway. J Biol Chem 1997;272(5):2896–2900.

    Article  PubMed  CAS  Google Scholar 

  50. Hahn SA, Schutte M, Hoque AT, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996;271:350–354.

    Article  PubMed  CAS  Google Scholar 

  51. Zhou S, Buckhaults P, Zawel L, et al. Targeted deletion of Smad4 shows it is required for transforming growth factor beta and activin signaling in colorectal cancer cells. Proc Natl Acad Sci USA 1998;95:2412–2416.

    Article  PubMed  CAS  Google Scholar 

  52. Riggins GJ, Thiagalingam S, Rozenblum E, et al. Mad-related genes in the human. Nat Genet 1996;13:347–349.

    Article  PubMed  CAS  Google Scholar 

  53. Pullman WE, Bodmer WF. Cloning and characterization of a gene that regulates cell adhesion. Nature 1992;356:529–532.

    Article  PubMed  CAS  Google Scholar 

  54. Lee SW. H-cadherin, a novel cadherin with growth inhibitory functions and diminished expression in human breast cancer. Nat Med 1996;2:776–782.

    Article  PubMed  CAS  Google Scholar 

  55. De Souza AT, Hankins GR, Washington MK, et al. Frequent loss of heterozygosity on 6q at the mannose 6-phosphate/insulin-like growth factor II receptor locus in human hepatocellular tumors. Oncogene 1995;10:1725–1729.

    PubMed  Google Scholar 

  56. Maul RS, Chang DD. EPLIN, epithelial protein lost in neoplasm. Oncogene 1999;18:7838–7841.

    Article  PubMed  CAS  Google Scholar 

  57. Hsu LC, White RL. BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci USA 1998;95:12,983–12,988.

    Article  CAS  Google Scholar 

  58. Johnson SM, Shaw JA, Walker RA. Sporadic breast cancer in young women: prevalence of loss of heterozygosity at p53, BRCA1 and BRCA2. Int J Cancer 2002;98(2):205–209.

    Article  PubMed  CAS  Google Scholar 

  59. Valarmathi MT, A A, Deo SS, Shukla NK, et al. BRCA1 germline mutations in Indian familial breast cancer. Hum Mutat (2003):21(1):98–99.

    Article  PubMed  Google Scholar 

  60. Langston AA, Malone KE, Thompson JD, et al. BRCA1 mutations in a population-based sample of young women with breast cancer. N Engl J Med 1996;334(3):137–142.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihai Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Z., Zhang, F., Zhou, C. et al. Genome-Wide search for loss of heterozygosity in Chinese patients with sporadic colorectal cancer. Int J Gastrointest Canc 34, 39–47 (2003). https://doi.org/10.1385/IJGC:34:1:39

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IJGC:34:1:39

Key Words

Navigation