Skip to main content

Advertisement

Log in

NF-κB/Rel transcriptional pathway

Implications in pancreatic cancer

  • Review Article
  • Published:
International Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Despite considerable efforts in understanding the cellular mechanisms contributing to pancreatic cancer, the prognosis of this malignant disease is still extremely poor. Although pancreatic cancer is the fifth common cause of cancer death in Western countries, current options in treatment enable a 5-yr survival rate for all stages of less than 5%. In the face fo the fatal outcome, new approaches to the therapy have been established. Based on its role in malignant transformation, apoptosis, and cell proliferation, the transcription factor NF-κB/Rel has gained the attention of many laboratories. This review provides basic information for the understanding of the biology of NF-κB and aims at presenting experimental data illustrating the involvement of NF-κB/Rel in pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sen R, Baltimore D. Inducibility of k immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 1986;47:921–928.

    Article  PubMed  CAS  Google Scholar 

  2. Schmid RM, Adler G. NF-κB/Rel/IκB: Implications in Gastrointestinal Diseases. Gastroenterology 2000;118:1208–1228.

    Article  PubMed  CAS  Google Scholar 

  3. Ben-Neriah Y. Regulatory functions of ubiquitination in the immune system. Nat Immunol 2002;3:20–26.

    Article  PubMed  CAS  Google Scholar 

  4. Algül H, Tando Y, Schneider G, Weidenbach H, Adler G, Schmid RM. Acute experimental pancreatitis and NF-κB/Rel activation. Pancreatology in press.

  5. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 1997;91:243–252.

    Article  PubMed  CAS  Google Scholar 

  6. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M: A cytokine-responsive IkappaB kinase that activates the transcription factor NF-κB. Nature 1997;388:548–554.

    Article  PubMed  CAS  Google Scholar 

  7. Zandi E, Karin M. Bridging the gap. Composition, regulation, and physiological function of the IκB kinase complex. Mol Cell Biol 1999;19:4547–4551.

    PubMed  CAS  Google Scholar 

  8. Gilmore TD: The Rel/NF-κB signal transduction pathway: introduction. Oncogene 1999;18:6842–6843.

    Article  PubMed  CAS  Google Scholar 

  9. Pahl HL. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999;18:6853–6866.

    Article  PubMed  CAS  Google Scholar 

  10. Rodriguez MS, Thompson J, Hay RT, Dargemont C. Nuclear retention of IκBα protects it from signal-induced degradation and inhibits nuclear factor κB transcriptional activation. J Biol Chem 1999;274:9108–9115.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson C, Van Antwerp D, Hope TJ. An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IkappaBalpha. EMBO J 1999;18:6682–6693.

    Article  PubMed  CAS  Google Scholar 

  12. Tam WF, Ranjan S. IκB family members function by different mechanisms. J Biol Chem 2001:16;7701–7704.

    Article  Google Scholar 

  13. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-κB activity. Annu Rev Immunol 2000;18:621–663.

    Article  PubMed  CAS  Google Scholar 

  14. Karin M. The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J Biol Chem 1999;24:27,339–27,342.

    Google Scholar 

  15. Delhase M, Hayakawa M, Chen Y, Karin M. Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science 1999;284:309–313.

    Article  PubMed  CAS  Google Scholar 

  16. Li N, Karin M. Ionizing radiation and short wavelength UV activate NF-kappaB through two distinct mechanisms. Proc Natl Acad Sci USA 1998;95:13,012–13,017.

    CAS  Google Scholar 

  17. Imbert V, Rupec RA, Livolsi A, et al. Tyrosine Phosphorylation of IκBα activates NF-κB without proteolytic degradation of IκBα. Cell 1996;86:787–798.

    Article  PubMed  CAS  Google Scholar 

  18. Beraud C, Henzel WJ, Buerle PA. Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NF-kappaB activation. Proc Natl Acad Sci USA 1999;96:429–434.

    Article  PubMed  CAS  Google Scholar 

  19. Gilmore T, Koedood M, Piffat K, White D. Rel/NF-κB/IκB proteins and cancer. Oncogene 1996;13:1367–1378.

    PubMed  CAS  Google Scholar 

  20. Rayet B, Gelinas C. Aberrant Rel/NF-κB genes and activity in human cancer. Oncogene 1999;18:6938–6947.

    Article  PubMed  CAS  Google Scholar 

  21. Ludwig L, Kessler H, Wagner M, et al. Nuclear factor-kappaB is constitutively active in C-cell carcinoma and required for RET-induced transformation. Cancer Res 2001;61:4526–4535.

    PubMed  CAS  Google Scholar 

  22. Liptay S, Seriu T, Bartram CR, Schmid RM. Germline configuration of nfkb2, c-rel and bcl3 in childhood acute lymphoblastic leukemia (ALL). Leukemia 1997;11:1364–1366.

    Article  PubMed  CAS  Google Scholar 

  23. Cabannes E, Khan G, Aillet F, Jarrett R, Hay R. Mutations in the IκBα gene in Hodgkin’s disease suggest a tumor suppressor role for IκBα. Oncogene 1999;18:3063–3070.

    Article  PubMed  CAS  Google Scholar 

  24. Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ, Baldwin AS Jr. Oncogenic Ha-Ras-induced signaling activates NF-kappaB transcriptional activity, which is required for cellular transformation. J Biol Chem 1997;272:24,113–24,116.

    Article  CAS  Google Scholar 

  25. Mayo MW, Wang CY, Cogswell PC, et al. Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 1997;278:1812–1815.

    Article  PubMed  CAS  Google Scholar 

  26. Rong R, He Q, Liu Y, Sheikh MS, Huang Y. TC21 mediates transformation and cell survival via activation of phosphatidylinositol 3-kinase/Akt and NF-kappaB signaling pathway. Oncogene 2002;21:1062–1070.

    Article  PubMed  CAS  Google Scholar 

  27. Baldwin AS. The transcription factor NF-κB and human disease. J Clin Invest 2001;107:3–5.

    Article  PubMed  CAS  Google Scholar 

  28. Takeshita H, Yoshizaki T, Miller WE, et al. Matrix metaloproteinase 9 expression is induced by Epstein-Barr virus latent membrane protein 1 C-terminal activation regions 1 and 2. J Virol 1999;73:5548–5555.

    PubMed  CAS  Google Scholar 

  29. Ryan KM, Ernst MK, Rice NR, Vousden KH. Role of NF-kappaB in p53-mediated programmed cell death. Nature 2000;404(6780):892–897.

    Article  PubMed  CAS  Google Scholar 

  30. Webster GA, Perkins ND. Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol 1999;19:3485–3495.

    PubMed  CAS  Google Scholar 

  31. Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M. NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 1999;19:2690–2698.

    PubMed  CAS  Google Scholar 

  32. Kreuz S, Siegmund D, Scheurich P, Wajant H. NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 2001;21:3964–3973.

    Article  PubMed  CAS  Google Scholar 

  33. Li Q, Lu Q, Hwang JY, Buscher D, Lee KF, Izpisua-Belmonte JC, Verma IM. IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev 1999;13:1322–1328.

    Article  PubMed  CAS  Google Scholar 

  34. Perkins ND, Felzien LK, Betts JC, Leung K, Beach DH, Nabel GJ. Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 1997;275:523–527.

    Article  PubMed  CAS  Google Scholar 

  35. Westerheide SD, Mayo MW, Anest V, Hanson JL, Baldwin AS Jr. The putative oncoprotein Bcl-3 induces cyclin D1 to stimulate G(1) transition. Mol Cell Biol 2001;21:8428–8436.

    Article  PubMed  CAS  Google Scholar 

  36. Bash J, Zong WX, Gelinas C. c-Rel arrests the proliferation of HeLa cells and affects critical regulators of the G1/S-phase transition. Mol Cell Biol 1997;17:6526–6536.

    PubMed  CAS  Google Scholar 

  37. Chen E, Li CC. Association of Cdk2/cyclin E and NF-kappa B complexes at G1/S phase. Biochem Biophys Res Commun 1998;249:728–734.

    Article  PubMed  CAS  Google Scholar 

  38. Barkett M, Gilmore T. Control of apoptosis by NF-κB transcription factors. Oncogene 1999;18:6910–6924.

    Article  PubMed  CAS  Google Scholar 

  39. Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 1999;284:321–325.

    Article  PubMed  CAS  Google Scholar 

  40. Tanaka M, Fuentes ME, Yamaguchi K, et al. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β deficient mice. Immunity 1999;10:421–429.

    Article  PubMed  CAS  Google Scholar 

  41. Yamaoka S, Courtois G, Bessia C, et al. Complementation cloning of NEMO, a component of the IkB kinase complex essential for NF-κB activation. Cell 1998;93:1231–1240.

    Article  PubMed  CAS  Google Scholar 

  42. Smahi A, Courtois G, Vabres P, et al. Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 2000;405:466–472.

    Article  PubMed  CAS  Google Scholar 

  43. Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J Clin Invest 2001;107:241–246.

    Article  PubMed  CAS  Google Scholar 

  44. Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ. The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 1999;5:119–127.

    PubMed  CAS  Google Scholar 

  45. Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 1999;5:412–417.

    Article  PubMed  Google Scholar 

  46. Shah SA, Potter MW, McDade TP, et al. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biochem 2001;82:110–122.

    Article  PubMed  CAS  Google Scholar 

  47. Arlt A, Vorndamm J, Breitenbroich M, et al. Inhibition of NF-kappaB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide (VP16) or doxorubicin. Oncogene 2001;20:859–868.

    Article  PubMed  CAS  Google Scholar 

  48. Glazyrin AL, Chinni S, Alhasan S, Adsay VN, Vaitkevicius VK, Sarkar FH. Molecular mechanism(s) of actinomycin-D induced sensitization of pancreatic cancer cells to CD95 mediated apoptosis. Int J Oncol 2002;20:201–205.

    PubMed  CAS  Google Scholar 

  49. Trauzold A, Wermann H, Arlt A, et al. CD95 and TRAIL receptor-mediated activation of protein kinase C and NF-kappaB contributes to apoptosis resistance in ductal pancreatic adenocarcinoma cells. Oncogene 2001;20:4258–4269.

    Article  PubMed  CAS  Google Scholar 

  50. Wang W, Abbruzzese JL, Evans DB, Chiao PJ. Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene 1999;18:4554–4563.

    Article  PubMed  CAS  Google Scholar 

  51. Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG. NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev 2001;12:73–90.

    Article  PubMed  CAS  Google Scholar 

  52. Kornmann M, Ishiwata T, Itakura J, Tangvoranuntakul P, Beger HG, Korc M. Increased Cyclin D1 in human pancreatic cancer is associated with decreased postoperative survival. Oncology 1998;55:363–369.

    Article  PubMed  CAS  Google Scholar 

  53. Wahl C, Liptay S, Adler G, Schmid RM. Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B. J Clin Invest 1998;101:1163–1174.

    Article  PubMed  CAS  Google Scholar 

  54. May MJ, D’Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S. Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science 2000;289:1550–1554.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland M. Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Algül, H., Adler, G. & Schmid, R.M. NF-κB/Rel transcriptional pathway. Int J Gastrointest Canc 31, 71–78 (2002). https://doi.org/10.1385/IJGC:31:1-3:71

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IJGC:31:1-3:71

Key Words

Navigation