Skip to main content
Log in

Phospholipase A2 and its potential regulation of islet function

  • Review
  • Published:
International Journal of Pancreatology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Creutzfeldt W, Ebert R. New developments in the incretin concept. Diabetologia 1985; 28: 565–573.

    PubMed  CAS  Google Scholar 

  2. Ahrén B, Taborsky GJ Jr, Porte D Jr. Neuropeptidergic versus cholinergic and adrenergic regulation of islet hormone secretion. Diabetologia 1986; 29: 827–836.

    PubMed  Google Scholar 

  3. Prentki M, Matchinsky FM. CA2+, cAMP and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiological Rev 1987; 67: 1185–1248.

    CAS  Google Scholar 

  4. IUPAC-IUB Comission of Biochemical Nomenclature. Nomenclature of phosphorous-containing compounds of biochemical importance. Biochem J 1978; 171: 1–19.

    Google Scholar 

  5. IUPAC-IUB Comission of Biochemical Nomenclature. The nomenclature of lipids. Biochem J 1978; 171: 21–35.

    Google Scholar 

  6. Strickland KP. The chemistry of phospholipids, in Form and Function of Phospholipids. Ansell GB, Hawthorne JN, Dawson RMC, eds. Elsevier Scientific Publishing Company, Amsterdam, 1973; pp. 9–42.

    Google Scholar 

  7. Stryer L. Biochemistry. WH Freeman and Company, New York, 1988.

    Google Scholar 

  8. Dennis EA. Phospholipases, in The Enzymes, Boyer P, ed. Academic Press, New York, 1983; pp. 307–353.

    Google Scholar 

  9. Martin TW, Wysolmerski, RB. Ca2+-dependent and Ca2+-independent pathways for release of arachidonic acid from phosphatidylinositol in endothelial cells. J Biol Chem 1987; 262: 13,086–13,092.

    CAS  Google Scholar 

  10. Irvine RF. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J 1982; 204: 3–16.

    PubMed  CAS  Google Scholar 

  11. Exton JH. Phospholipase D. Biochim Biophys Acta 1998; 1436: 105–115.

    PubMed  CAS  Google Scholar 

  12. Cockroft S. G-protein-regulated phospholipases C, D and A2-mediated signalling in neutrophils. Biochim Biophys Acta 1992; 1113: 135–160.

    Google Scholar 

  13. Leslie CC. Properties and regulation of cytosolic phospholipase A2. J Biol Chem 1997; 272: 16,709–16,712.

    CAS  Google Scholar 

  14. Kramer RM, Roberts EF, Manetta J, Putnam JE. The Ca2+-sensitive cytosolic phospholipase A2 is a 100 kDa protein in human monoblast U937 cells. J Biol Chem 1991; 266: 5268–5272.

    PubMed  CAS  Google Scholar 

  15. Nalefski EA, McDonagh T, Somers W, Seehra J, Falke JJ, Clark JD. Independent folding and ligand specificity of the C2 calcium-dependent lipid binding domain of cytosolic phospholipase A2. J Biol Chem 1998; 273: 1365–1372.

    PubMed  CAS  Google Scholar 

  16. de Haas GH, Postema NM, Nieuwenhuizen W, van Deenen LLM. Purification and properties of phospholipase A2 from porcine pancreas. Biochim Biophys Acta 1967; 159: 103–117.

    Google Scholar 

  17. Murakami M, Kudo I, Inoue K. Secretory phospholipases A2. J Lipid Med 1995; 12: 119–130.

    CAS  Google Scholar 

  18. Dennis EA. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 1994; 269: 13,057–13,060.

    CAS  Google Scholar 

  19. Dennis EA. The growing phospholipase A2 superfamily of signal transduction enzymes. TIBS 1997; 22: 1,2.

    PubMed  CAS  Google Scholar 

  20. Hazen SL, Stuppy RJ, Gross RW. Purification and characterization of canine myocardial cytosolic phospholipases A2. J Biol Chem 1990; 265: 10,622–10,630.

    CAS  Google Scholar 

  21. Yu BZ, Bert OG, Jain MK. The divalent cation is obligatory for the binding of ligands to the catalytic site of secreted phospholipase A2. Biochem 1993; 32: 6485–6492.

    CAS  Google Scholar 

  22. Hanel AM, Gelb MH. Multiple enzymatic activities of the human cytosolic 85-kDa phospholipase A2: hydrolytic reactions and acyl transfer to glycerol. Biochem 1994; 34: 7807–7818.

    Google Scholar 

  23. Murakami M, Kudo, I, Inoue K. Secretory phospholipases A2. J Lipid Med 1995; 12: 119–130.

    CAS  Google Scholar 

  24. Hazen SL, Gross RW. ATP-dependent regulation of rabbit myocardial cytosolic calcium-independent phospholipase A2. J Biol Chem 1993; 268: 9892–9900.

    PubMed  CAS  Google Scholar 

  25. Ramanadham S, Wolf MJ, Jett PA, Gross RW, Turk J. Characterization of an ATP-stimulatable Ca2+-independent phospholipase A2 from clonal insulin-secreting HIT cells and rat pancreatic islets: a possible molecular component of the β-cell fuel sensor. Biochem 1994; 33: 7442–7452.

    CAS  Google Scholar 

  26. Ackerman EJ, Conde-Frieboes K, Dennis EA. Inhibition of macrophage Ca2+-independent phospholipase A2 by bromoenol lactone and trofluoromethyl ketones. J Biol Chem 1995; 270: 445–450.

    Google Scholar 

  27. Tang J, Kriz RW, Wolfman N, Schaffer M, Seehra J, Jones SS. A novel cytosolic calcium-independent phospholipase A2 contains eight ankyrin motifs. J Biol Chem 1997; 272: 8567–8575.

    PubMed  CAS  Google Scholar 

  28. Axelrod J. Receptor-mediated activation of phospholipase A2 and arachidonic acid release in signal transduction. Biochem Soc Trans 1990; 18: 503–507.

    PubMed  CAS  Google Scholar 

  29. Nemenoff RA, Winitz S, Qian NX, Van Putten V, Johnson GL, Heasley LE. Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule-associated protein 2 kinase and protein kinase C. J Biol Chem 1993; 268: 1960–1964.

    PubMed  CAS  Google Scholar 

  30. Glaser KB, Mobilio D, Chang JY, Senko N. Phospholipase A2 enzymes: regulation and inhibition. Trends Pharmacol Sci 1993; 14: 92–98.

    PubMed  CAS  Google Scholar 

  31. Clark JD, Schievella AR, Nalefski EA, Lin LL. Cytosolic phospholipase A2. J Lipid Med 1995; 12: 83–117.

    CAS  Google Scholar 

  32. Dennis EA. The regulation of eicosanoid production: role of phospholipases and inhibitors. Bio/Technology 1987; 5: 1294–1300.

    CAS  Google Scholar 

  33. Bevan S, Wood JN. Arachidonic-acid metabolites as second messengers. Nature 1987; 328: 20.

    PubMed  CAS  Google Scholar 

  34. Piomelli D. Arachidonic acid in cell signaling. Curr Opin Cell Biol 1993; 5: 274–280.

    PubMed  CAS  Google Scholar 

  35. Bell RL, Kennerly RA, Stanford N, Majerus PM. Diglyceride lipases: a pathway for arachidonic release from human platelets. Proc Natl Acad Sci USA 1979; 76: 3238–3241.

    PubMed  CAS  Google Scholar 

  36. Balsinde J, Diez E, Mollinedo F. Arachidonic acid release from diacylglycerol in human neutrophils. J Biol Chem 1991; 266: 15,638–15,643.

    CAS  Google Scholar 

  37. Naor Z. At the cutting edge: Is arachidonic acid a second messenger in signal transduction? Mol Cell Endocrinol 1991; 80: C181-C186.

    PubMed  CAS  Google Scholar 

  38. Matchinsky FM, Elleman JE. Metabolism of glucose in the islets of Langerhans. J Biol Chem 1968; 243: 2730–2736.

    Google Scholar 

  39. Parker KJ, Jones PM, Hunton CH, Persaud SJ, Taylor CG, Howell SL. Identification and localisation of a type IV cytosolic phospholipase A2 in rat pancreatic beta-cells. J Mol Endocrinol 1996; 17: 31–43.

    PubMed  CAS  Google Scholar 

  40. Loweth AC, Scarpello JHB, Morgan NG. Phospholipase A2 expression in human and rodent insulin-secreting cells. Mol Cell Endocrinol 1995; 112: 177–183.

    PubMed  CAS  Google Scholar 

  41. Ma Z, Ramanadham S, Hu Z, Turk J. Cloning and expression of a group IV cytosolic Ca2+-dependent phospholipase A2 from rat pancreatic islets. Comparison of the expressed activity with that of an islet group VI cytosolic Ca2+-independent phospholipase A2. Biochim Biophys Acta 1998; 1391: 384–400.

    PubMed  CAS  Google Scholar 

  42. Jolly YC, Major C, Wolf BA. Transient activation of calcium-dependent phospholipase A2 by insulin secretagogues in isolated pancreatic islets. Biochem 1993; 32: 12,209–12,217.

    CAS  Google Scholar 

  43. Metz SA, Dunlop M. Sodium fluoride unmasks the accumulation of lysophosphatidylcholine in intact pancreatic islet cells. Biochem Biophys Res Commun 1990; 167: 61–66.

    PubMed  CAS  Google Scholar 

  44. Dunlop ME, Larkins RG. The role of calcium ion phospholipid turnover following glucose stimulation in neonatal rat cultured islets. J Biol Chem 1984; 259: 8407–8411.

    PubMed  CAS  Google Scholar 

  45. Wolf BA, Florholmen J, Turk J, McDaniel ML. Studies of the Ca2+ requirements for glucose- and carbachol-induced augmentation of inositol trisphosphate and inositol tetrakisphosphate accumulation in digitonin-permeabilized islets. J Biol Chem 1988; 263: 3565–3575.

    PubMed  CAS  Google Scholar 

  46. Dunlop ME, Metz SA. A phospholipase D-like mechanism in pancreatic islet cells: stimulation by calcium ionophore, phorbol ester and sodium fluoride. Biochem Biophys Res Commun 1989; 163: 922–928.

    PubMed  CAS  Google Scholar 

  47. Metz SA, Dunlop M. Production of phosphatidylethanol by phospholipase D phoshatidyl transferase in intact or dispersed pancreatic islets: evidence for the in situ metabolism of phosphatidylethanol. Arch Biochem Biophys 1990; 283: 417–428.

    PubMed  CAS  Google Scholar 

  48. Metz SA. The pancreatic islet as Rubik’s cube. Is phospholipid hydrolysis a piece of the puzzle? Diabetes 1991; 40: 1565–1573.

    PubMed  CAS  Google Scholar 

  49. Metz S, Holmes D, Robertson RP, Leitner W, Draznin B. Gene expression of type I phospholipase A2 in pancreatic β-cells. FEBS Lett 1991; 295: 110–112.

    PubMed  CAS  Google Scholar 

  50. Chen M, Yang Z-D, Naji A, Wolf BA. Identification of calcium-dependent phospholipase A2 isoforms in human and rat pancreatic islets and insulin secreting β-cell lines. Endocrinology 1996; 137: 2901–2909.

    PubMed  CAS  Google Scholar 

  51. Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell 1991; 65: 1043–1051.

    PubMed  CAS  Google Scholar 

  52. Laychock SG. Phospholipase A2 activity in pancreatic islets is calcium-dependent and stimulated by glucose. Cell Calcium 1982; 3: 43–54.

    PubMed  CAS  Google Scholar 

  53. Best L, Sener A, Malaisse WJ. Does glucose affect phospholipase A2 activity in pancreatic islets. Biochem Pharm 1984; 33: 2657–2662.

    PubMed  CAS  Google Scholar 

  54. Konrad RJ, Jolly C, Major C, Wolf BA. Inhibition of phospholipase A2 and insulin secretion in pancreatic islets. Biochim Biophys Acta 1992; 1135: 215–220.

    PubMed  CAS  Google Scholar 

  55. Tadayyon M, Green IC. Pharmacological interference with phospholipase A2 activity reveals mechanistic differences between glucose and glyceraldehyde induced insulin release: implication for coupling of glucose metabolism to phospholipase A2 activity. Diabetes Metab 1993; 19: 36–43.

    CAS  Google Scholar 

  56. Loweth AC, Scarpello JHB, Morgan NG. A specific inhibitor of cytosolic phospholipase A2 activity, AACOCF3, inhibits glucose-induced insulin secretion from isolated rat islets. Biochem Biophys Res Comm 1996; 218: 423–427.

    PubMed  CAS  Google Scholar 

  57. Yamamoto S, Ishii M, Nakadate T, Nakaki T, Kato R. Modulation of insulin secretion by lipoxygenase products of arachidonic acid. J Biol Chem 1983; 258: 12,149–12,152.

    CAS  Google Scholar 

  58. Zawalich W, Zawalich K. Effect of exogenous phospholipase A2 on insulin secretion from perifused rat islets. Diabetes 1985; 34: 471–476.

    PubMed  CAS  Google Scholar 

  59. Henquin JC, Nenquin M. The muscarinic receptor subtype in mouse pancreatic B-cells. FEBS Letters 1988; 236; 89–92.

    PubMed  CAS  Google Scholar 

  60. Dunlop ME, Larkins RG. Muscarinic-agonist and guanine nucleotide activation of polyphosphoinositide phosphodiesterase in isolated islet-cell membranes. Biochem J 1986; 240: 731–737.

    PubMed  CAS  Google Scholar 

  61. Konrad RJ, Jolly YC, Major C, Wolf BA. Carbachol stimulation of phospholipase A2 and insulin secretion in pancreatic islets. Biochem J 1992; 287: 283–290.

    PubMed  CAS  Google Scholar 

  62. Zawalich WS, Takuwa N, Takuwa Y, Diaz VA, Rasmussen H. Interactions of cholecystokinin and glucose in rat pancreatic islets. Diabetes 1987; 36: 426–433.

    PubMed  CAS  Google Scholar 

  63. Karlsson S, Ahrén B. Cholecystokinin and the regulation of insulin secretion. Scand J Gatroenterol 1992; 27: 161–165.

    CAS  Google Scholar 

  64. Malm D, Giaever A, Vonen B, Florholmen J. Cholecystokinin and somatostatin modulate the glucose-induced insulin secretion by different mechanisms in pancreatic islets. A study on phosholipase C activity and calcium requirement. Scand J Clin Lab Invest 1993; 53: 671–676.

    PubMed  CAS  Google Scholar 

  65. Simonsson E, Karlsson S, Ahrén B. Ca2+-independent phospholipase A2 contributes to the insulinotropic action of cholecystokinin-8 in rat islets. Dissociation from the mechanism of carbachol. Diabetes 1998; 47: 1436–1443.

    PubMed  CAS  Google Scholar 

  66. Wolf BA, Turk J, Sherman WR, McDaniel ML. Intracellular Ca2+ mobilization by arachidonic acid: comparison with myo-inositol 1,4,5-trisphosphate in isolated pancreatic islets. J Biol Chem 1986; 261: 3501–3511.

    PubMed  CAS  Google Scholar 

  67. Wolf BA, Pasquale SM, Turk J. Free fatty acid accumulation in secretagogue-stimulated pancreatic islets and effects of arachidonate on depolarization-induced insulin secretion. Biochemistry 1991; 30: 6372–6379.

    PubMed  CAS  Google Scholar 

  68. Turk J, Mueller M, Bohrer A, Ramanadham S. Arachidonic acid metabolism in isolated pancreatic islets. VI. Carbohydrate insulin secretagogues must be metabolized to induce eicosanoid release. Biochim Biophys Acta 1992; 1125: 280–291.

    PubMed  CAS  Google Scholar 

  69. Gross RW, Ramanadham S, Kruszka KK, Han X, Turk J. Rat and human pancreatic islet cells contain a calcium ion independent phospholipase A2 activity selective for hydrolysis of arachidonate which is stimulated by adenosine trisphosphate and is specifically localized to islet betacells. Biochemistry 1993; 32: 327–336.

    PubMed  CAS  Google Scholar 

  70. Turk J, Gross RW, Ramanadham S. Amplification of insulin secretion by lipid messengers. Diabetes 1993; 42: 367–374.

    PubMed  CAS  Google Scholar 

  71. Ma Z, Ramanadham S, Kempe K, Sherry Chi X, Ladenson J, Turk J. Pancreatic islets express a Ca2+-independent phospholipase A2 enzyme that contains a repeated structural motif homologous to the integral membrane protein binding domain of ankyrin. J Biol Chem 1997; 272: 11,118–11,127.

    CAS  Google Scholar 

  72. Nowatzke W, Ramanadham S, Ma Z, Hsu FF, Bohrer A, Turk J. Mass spectrometric evidence that agents that cause loss of Ca2+ from intracellular compartments induce hydrolysis of arachidonic acid from pancreatic islet membrane phospholipids by a mechanism that does not require a rise in cytosolic Ca2+ concentration. Endocrinology 1998; 139: 4073–4085.

    PubMed  CAS  Google Scholar 

  73. Ma Z, Wang X, Nowatzke W, Ramanadham S, Turk J. Human pancreatic islets express mRNA species encoding two distinct catalytically active isoforms of group VI phospholipase A2 (iPLA2) that arise from an exon-skipping mechanism of alternative splicing of the transcript from the iPLA2 gene on chromosome 22q13.1. J Biol Chem 1999; 274: 9607–9616.

    PubMed  CAS  Google Scholar 

  74. Balsinde J, Dennis EA. Function and inhibition of intracellular calcium-independent phospholipase A2. J Biol Chem 1997; 272: 16,069–16,072.

    CAS  Google Scholar 

  75. Ramanadham S, Hsu FF, Bohrer A, Ma Z, Turk J. Studies of the role of group VI phospholipase A2 in fatty acid incorporation, phospholipid remodeling, lysophosphatidylcholine generation, and secretagogue-induced arachidonic acid release in pancreatic islets and insulinoma cells. J Biol Chem 1999; 274: 13,915–13,927.

    CAS  Google Scholar 

  76. Ramanadham S, Gross RW, Han X, Turk J. Inhibition of arachidonate release suppresses both insulin secretion and the rise in β-cell cytosolic Ca2+ concentration. Biochemistry 1993; 32: 337–346.

    PubMed  CAS  Google Scholar 

  77. Burgoyne RD, Morgan A. The control of free arachidonic acid levels. Trends Biochem Sci 1987; 15: 365–366.

    Google Scholar 

  78. Metz SA. Exogenous arachidonic acid promotes insulin release from intact or permeabilized rat islets by dual mechanisms. Putative activation of Ca2+ mobilization and protein kinase C. Diabetes 1988; 37: 1453–1469.

    PubMed  CAS  Google Scholar 

  79. Metz SA. Putative roles for lysophospholipids as mediators and lipoxygenase-mediated metabolites of arachidonic acid as potentiators of stimulus-secretion coupling: dual mechanisms of p-hydroxymercuribenzoic acid-induced insulin release. J Pharmacol Exp Ther 1986; 238: 819–832.

    PubMed  CAS  Google Scholar 

  80. Rustenbeck I, Lenzen S. Effect of lysophospholipids, arachidonic acid and other fatty acids on regulation of Ca2+-transport in permeabilized pancreatic islets. Cell Calcium 1992; 13: 193–202.

    PubMed  CAS  Google Scholar 

  81. Schreuy MP, Montague W. Phosphatidylinositol hydrolysis in isolated guinea-pig islets of Langerhans. Biochem J 1983; 216: 433–441.

    Google Scholar 

  82. Morgan NG, Montague W. Phospholipids and insulin secretion, in Nutrient Regulation of Insulin Secretion. Flatt PR, ed. London and Chapel Hill, Portland Press, pp 125–155, 1992.

    Google Scholar 

  83. Konrad RJ, Major CD, Wolf BA. Diacylglycerol hydrolysis to arachidonic acid is necessary for insulin secretion from isolated pancreatic islets: sequential actions of diacylglycerol and monoacylglycerol lipases. Biochemistry 1994; 33: 13,284–13,294.

    CAS  Google Scholar 

  84. Peter-Riesch B, Fahti M, Sclegel W, Wollheim CB. Glucose and carbachol generate 1,2-diacylglycerols by different mechanisms in pancreatic islets. J Clin Invest 1988; 81: 1154–1161.

    PubMed  CAS  Google Scholar 

  85. Thams P, Capito K. Inhibition of glucose-induced insulin secretion by the diacylglycerol lipase inhibitor RHC 80267 and the phospholipase A2 inhibitor ACA through stimulation of K+ permeability without diminution by exogenous arachidonic acid. Biochem Pharm 1997; 53: 1077–1086.

    PubMed  CAS  Google Scholar 

  86. Ramanadham S, Gross R, Turk J. Arachidonic acid induces an increase in the cytosolic calcium concentration in single pancreatic islet betacells. Biochem Biophys Res Commun 1992; 184: 647–653.

    PubMed  CAS  Google Scholar 

  87. Metz SA. Arachidonic acid and its metabolites: evolving roles as transmembrane signals for insulin release. Prostaglandins Leucotrienes and Essential Fatty Acids 1988; 32: 187–202.

    CAS  Google Scholar 

  88. Landt M, Easom RA, Colca JR, Wolf BA, Turk J, Mills LA, McDaniel ML. Parallel effects of arachidonic acid on insulin secretion calmodulin-dependent protein kinase and protein kinase C activity in pancreatic islets. Cell Calcium 1992; 13: 163–172.

    PubMed  CAS  Google Scholar 

  89. Creutz CE. cis-Unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin. J Cell Biol 1981; 91: 247–256.

    PubMed  CAS  Google Scholar 

  90. Kowluru A, Metz SA. Regulation of guanine-nucleotide binding proteins in islet subcellular fractions by phospholipase-derived lipid mediators of insulin secretion. Biochim Biophys Acta 1994; 1222: 360–368.

    PubMed  CAS  Google Scholar 

  91. Turk J, Colca JR, Kotagal N, McDaniel, ML. Arachidonic acid metabolism in isolated pancreatic islets II. The effects of glucose and of inhibitors of arachidonate metabolism on insulin secretion and metabolite synthesis. Biochim Biophys Acta 1984; 794: 125–136.

    PubMed  CAS  Google Scholar 

  92. Robertson RP. Arachidonic acid metabolite regulation of insulin secretion. Diab Metab Rev 1986; 2: 261–296.

    Article  CAS  Google Scholar 

  93. Green IC, Tadayyon M. Opiate-prostaglandin interactions in the regulation of insulin secretion from rat islets of Langerhans in vitro. Life Sci 1988; 42: 2123–2130.

    PubMed  CAS  Google Scholar 

  94. Turk J, Colca JR, McDaniel ML. Arachidonic acid metabolism in isolated pancreatic islets. III. Effects of exogenous lipoxygenase products and inhibitors on insulin secretion. Biochim Biophys Acta 1985; 834: 23–36.

    PubMed  CAS  Google Scholar 

  95. Simonsson E, Karlsson S, Ahrén B. Involvement of phospholipase A2 and arachidonic acid in cholecystokinin-8-induced insulin secretion. Regul Pept 1996; 65: 101–107.

    PubMed  CAS  Google Scholar 

  96. Sekiguchi MS, Tsukuda M, Ogita K, Kikkawa U, Nishizuka Y. Three distinct forms of rat brain protein kinase C: differential response to unsaturated fatty acids. Biochem Biophys Res Comm 1987; 145: 797–802.

    PubMed  CAS  Google Scholar 

  97. Siess W, Siegel FL, Lapetina EG. Arachidonic acid stimulates the formation of 1,2-diacylglycerol and phosphatidic acid in human platelets. Degree of phospholipase C activation correlates with protein phosphorylation, platelet shape change, serotonin release, and aggregation. J Biol Chem 1983; 258: 11,236–11,242.

    CAS  Google Scholar 

  98. Zeitler P, Handwerger S. Arachidonic acid stimulates phosphoinositide hydrolysis and human placental lactogen release in an enriched fraction of placental cells. Mol Pharm 1985; 28: 549–554.

    CAS  Google Scholar 

  99. Hwang SC, Jhon DY, Bae YS, Kim JH, Rhee SG. Activation of phospholipase C-gamma by the concerted action of tau proteins and arachidonic acid. J Biol Chem 1996; 271: 18,342–18,349.

    CAS  Google Scholar 

  100. Laychock SG, Fatty acids and cyclooxygenase and lipoxygenase pathway inhibitors modulate inositol phosphate formation in pancreatic islets. Mol Pharmacol 1990; 37: 928–936.

    PubMed  CAS  Google Scholar 

  101. Engelhard VH, Glasser M, Storm DR. Effects of membrane phospholipid compositional changes on adenylate cyclase in LM cells. Biochemistry 1978; 17: 3191–3200.

    PubMed  CAS  Google Scholar 

  102. Poon R, Richards JM, Clark WR. The relationship between plasma membrane lipid composition and physical-chemical properties. II. Effect of phospholipid fatty acid modulation on plasma membrane physical properties and enzymatic activities. Biochim Biophys Acta 1981; 649: 58–66.

    PubMed  CAS  Google Scholar 

  103. Kuo WN, Hodgins DS, Kuo JF. Adenylate cyclase in islets of Langerhans. Isolation of islets and regulation of adenylate cyclase activity by various hormones and agents. J Biol Chem 1973; 248: 2705–2711.

    PubMed  CAS  Google Scholar 

  104. Veroni MC, Michelangeli VP, Heaney TP, Ng KW, Partridge NC, Larkins RG. Adenylate cyclase responsiveness of human insulinomas. Horm Metab Res 1981; 13: 254–259.

    PubMed  CAS  Google Scholar 

  105. Heaney TP, Larkins R. The effect of prostacyclin and 6-keto-prostaglandin F1 on insulin secretion and cyclic adenosine 3′,5′-monophosphate content in isolated rat islets. Diabetes 1981; 30: 824–828.

    PubMed  CAS  Google Scholar 

  106. Robertson RP, Tsai P, Little SA, Zhang H-J, Walseth TF. Receptor-mediated adenylate cyclase-coupled mechanism for PGE2 inhibition of insulin secretion in HIT cells. Diabetes 1987; 36: 1047–1052.

    PubMed  CAS  Google Scholar 

  107. Porte D Jr. B cells in type 2 diabetes mellitus. Diabetes 1992; 40:166–180.

    Google Scholar 

  108. Ahrén B, Simonsson E, Mulder H, Myrsén U, Sundler F. Dissociated insulinotropic sensitivity to glucose and carbachol with increased insulin gene expression in high-fat diet-induced insulin resistance in C57BL/6J-mice. Metabolism 1997; 46: 97–106.

    PubMed  Google Scholar 

  109. Simonsson E, Ahrén B. Potentiated β-cell response to non-glucose stimuli in insulin-resistant C57BL/6J mice. Eur J Pharmacol 1998; 350: 243–250.

    PubMed  CAS  Google Scholar 

  110. Ramanadham S, Wolf MJ, Li B, Bohrer A, Turk J. Glucose-responsitivity and expression of an ATP-stimulatable, Ca2+-independent phospholipase A2 enzyme in clonal insulinoma cell lines. Biochim Biophys Acta 1997; 1344: 153–164.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Simonsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonsson, E., Ahrén, B. Phospholipase A2 and its potential regulation of islet function. International Journal of Pancreatology 27, 1–11 (2000). https://doi.org/10.1385/IJGC:27:1:01

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IJGC:27:1:01

Keywords

Navigation