Skip to main content
Log in

Angiogenesis and cathepsin expression are prognostic factors in pancreatic adenocarcinoma after curative resection

  • Published:
International Journal of Pancreatology Aims and scope Submit manuscript

Summary

Background. Curative resection of pancreatic adenocarcinoma is the only clinical parameter related to a favorable prognosis while other clinicopathological parameters fail. To evaluate whether angiogenesis, vascular endothelial growth factor (VEGF) or certain tumor proteases, e.g., cathepsin B (CTSB) and L (CTSL), are factors of prognostic relevance, we investigated their expression in patients with long- and short-term survival after curative resection (R0) because of pancreatic adenocarcinoma.

Methods. Twenty-nine tissue samples from patients with adenocarcinoma of the pancreas were examined. The patients were selected in a long-term survival group with a survival ≥24 mo (n=18) and a short-term survival group of patients, who died within 8 mo after surgery because of their malignancy (n=11). The microvessel quantification was performed immunohistochemically using a monoclonal anti-CD34 antibody. VEGF, CTSB, and CTSL expressions was studied using polyclonal antibodies (PAbs).

Results. The median microvessel density (MVD) was 75 (range 39–182). MVD correlated significantly with the survival time after surgery (p=0.0132) but not with clinicopathological parameters. In cancer cells, VEGF was positive in 82.8% and showed significant correlation with the MVD (p=0.0002) and survival time (p=0.0395). Positive immunoreactivity could be obtained for 96.5% for CTSB and 84.2% for CTSL. Expression of both proteases correlated significantly with the survival time after surgery (CTSB p=0.0002, CTSL p=0.0001). Furthermore, CTSB expression correlated with invasion of the perineural space. Thus, a short postoperative survival correlated with a high MVD, and highly expressed VEGF, CTSB, and CTSL. No significant correlation between MVD, VEGF, as well as CTSL and clinicopathological parameters was found. For routinely assessed markers (e.g., TNM-stage, UICC-stage, and so on) no significant correlation with survival time was found in this small group of patients.

Conclusion. These findings indicate that the MVD, VEGF, CTSB, and CTSL are prognostic factors after curative resection, whereas other parameters (TNM, UICC, and so on) failed to show prognostic relevance in our group of patients. Furthermore, the correlation between MVD and VEGF underlines the importance of this growth factor for angiogenesis and tumor growth. The correlation between CTSB and perineural invasion demonstrates the involvement of cathepsins in local tumor invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Warshaw AL, del Castillo F. Pancreatic carcinoma. N Engl J Med 1992; 326: 455.

    Article  PubMed  CAS  Google Scholar 

  2. Trede M, Schwall G, Saeger HD. Survival after pancreaticoduodenectomy: 118 consecutive resections without an operative mortality. Ann Surg 1990; 211: 447–458.

    Article  PubMed  CAS  Google Scholar 

  3. Trede M. Surgical Options for Pancreatic Cancer, in Surgery of the Pancreas, Trede M, Carter DC, eds. Churchill Livingston, New York, NY, 1997, pp. 471–481.

    Google Scholar 

  4. Yeo CJ, Cameron JL. Prognostic factors in ductal pan creatic cancer. Langenbecks Arch Surg 1998; 383: 129–133.

    PubMed  CAS  Google Scholar 

  5. Ellenrieder V, Adler G, Gress TM. Invasion and metastasis in pancreatic cancer. Ann Oncol 1999; 10(suppl) 46–50.

    Article  PubMed  Google Scholar 

  6. Lemoine NR. Molecular advances in pancreatic cancer. Digestion 1997; 58: 550–556.

    Article  PubMed  CAS  Google Scholar 

  7. Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58–61.

    Article  PubMed  CAS  Google Scholar 

  8. Weidner N, Semple JP, Welch WR, Folkman N. Tumor angiogenesis and metastasis: correlation in invasive breast carcinoma. N Engl J Med 1991; 324: 1–8.

    Article  PubMed  CAS  Google Scholar 

  9. Maeda K, Chung YS, Takatuka S, Ogawa Y, Onoda N, Sawada T, et al. Tumor angiogenesis and tumor cell proliferation as prognostic indicators in gastric carcinoma. Br J Cancer 1995; 72: 319–323.

    PubMed  CAS  Google Scholar 

  10. Ferrara N, Houck KA, Jakeman L, Leung DW. The vascular endothelial growth factor family of polypeptides. J Cell Biochem 1991; 47: 211–218.

    Article  PubMed  CAS  Google Scholar 

  11. Duffy MJ. The role of proteolytic enzymes in cancer invasion and metastases. Clin Exp Met 1992; 10: 145–155.

    Article  CAS  Google Scholar 

  12. Kuliawat R, Klumperman J, Ludwig T, Arvan P. Differential sorting of lysosomal enzymes out of the regulated secretory pathway in pancreatic β-cells. J Cell Biol 1997; 137: 595–608.

    Article  PubMed  CAS  Google Scholar 

  13. Leto G, Tumminello FM, Pizzolanti G, Montalto G, Soresi M, Carroccio A, et al. Lysosomal aspartic and cysteine proteinases serum levels in patients with pancreatic cancer or pancreatitis. Pancreas 1997; 14: 22–27.

    Article  PubMed  CAS  Google Scholar 

  14. Ohta T, Terada T, Nagakawa T. Pancreatic trypsinogen and cathepsin B in human pancreatic carcinomas and associated metastatic lesion. Br J Cancer 1994; 69: 152–156.

    PubMed  CAS  Google Scholar 

  15. Yamaguchi N, Chung SM, Shiroeda O, Imanishi J. Characterization of a cathepsin L-like enzyme secreted from human pancreatic cancer cell line HPC-YP. Cancer Res. 1990; 50: 658–663.

    PubMed  CAS  Google Scholar 

  16. Tandon AK, Clark GM, Chamness GC, Chirgwin JM, McGuire WL. Cathepsin D and prognosis in breast cancer. N Engl J Med 1990; 322: 297–302.

    Article  PubMed  CAS  Google Scholar 

  17. Breslow NE. Analysis of survival data under the proportional hazards model. Int. Stat Rev. 1975; 43: 45–58.

    Article  Google Scholar 

  18. Wilcoxon F, Katti SK, Wilcox RA. Critical values and probability levels for the Wilcoxon Rank Sum Test and the Wilcoxon signed rank test. Pearl River, NY, Lederle Laboratories, 1963.

  19. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457,458.

    Article  Google Scholar 

  20. Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 1966; 50: 163–170.

    PubMed  CAS  Google Scholar 

  21. Dugan MC and Sarkar FH. Current concepts in pancreatic cancer: symposium summary. Pancreas 1998; 17: 325–333.

    Article  PubMed  CAS  Google Scholar 

  22. Bramhall SR, Allum WH, Jones AG, Allwood A, Cummins C, Neoptolemos JP. Treatment and survival in 13560 patients with pancreatic cancer, and incidence of the disease, in the West Midlands: an epidemiological study. Br J Surg 1995; 82: 111–115.

    Article  PubMed  CAS  Google Scholar 

  23. Fidler IJ and Ellis LM. The implications of angiogenesis for the biology and therapy of cancer metastases. Cell 1994; 79: 185–188.

    Article  PubMed  CAS  Google Scholar 

  24. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146: 1029–1039.

    PubMed  CAS  Google Scholar 

  25. Kuehn R, Lelkes PI, Bloechle C, Niendorf A, Izbicki JR. Angiogenesis, angiogenic growth factors, and cell adhesion molecules are upregulated in chronic pancreatic diseases: angiogenesis in chronic pancreatitis and in pancreatic cancer. Pancreas 1999; 18: 96–103.

    Article  PubMed  CAS  Google Scholar 

  26. Boehle AS, Kalthoff H. Molecular mechanisms of tumor metastasis and angiogenesis. Langenbecks Arch Surg 1999; 384: 133–140.

    Article  Google Scholar 

  27. Siemeister G, Martiny-Baron G, Marme D. The pivotal role of VEGF in tumor angiogenesis: molecular facts and therapeutic opportunities. Cancer Metastasis Rev 1998; 17: 241–248.

    Article  PubMed  CAS  Google Scholar 

  28. Brogi E, Schatteman G, Wu T, Kim EA, Varticovski L, Keyt B, Isner JM. Hypoxia-induced paracrine regulation of vascular endothelian growth factor. J Clin Invest 1996; 97: 469–476.

    Article  PubMed  CAS  Google Scholar 

  29. Rak J, Mitsuhashi Y, Bayko L, Filmus J, Shirawasa S, Sasa zuki T, Kerbel RS. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 1995; 55: 4575–4580.

    PubMed  CAS  Google Scholar 

  30. Detmar M, Brown LF, Claffey KB, Yeo KT, Kocher O, Jackman RW, et al. Overexpression of vascular permeability/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med 1994; 180: 1141–1146.

    Article  PubMed  CAS  Google Scholar 

  31. Ikeda N, Adachi M, Taki T, Hashida H, Sho M, Nakajima Y, et al. Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer 1999; 79: 1553–1563.

    Article  PubMed  CAS  Google Scholar 

  32. Folkman J. Clinical applications of research on angiogenesis. N Engl J Med 1995; 333: 1757–1763.

    Article  PubMed  CAS  Google Scholar 

  33. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS. Inhibition of vascular endothelial growth factor-induced angiogenesis supresses tumor growth in vivo. Nature 1993; 362: 4262–4267.

    Google Scholar 

  34. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M. Angiostatin: a novel angiogenesis inhibitor that mediates the supression of metatases by a Lewis lung carcinoma. Cell 1994; 79: 315–328.

    Article  PubMed  CAS  Google Scholar 

  35. Ramakrishnan S, Olson TA, Bautch VL, Mohanraj D. Vascular endothelial factor-toxin conjugate specifically inhibits KDR/flk-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo. Cancer Res 1996; 56:1324–1330.

    PubMed  CAS  Google Scholar 

  36. Fujimoto K, Hosotani R, Wada M, Lee JU, Koshiba T, Miyamoto Y, et al. Expression of two angiogenic factors, VEGF and PDEGF in human pancreatic cancer, and its relationship to angiogenesis. Eur J Cancer 1989; 34:1439–1447.

    Article  Google Scholar 

  37. Sloane BF, Dunn JR, Honn KV. Lysosomal Cathepsin B: correlation with metastatic potential. Science 1981; 212:1151–1153.

    Article  PubMed  CAS  Google Scholar 

  38. Im B, Kominami E, Grube D, Uchiyama Y. Immunhistocytocemical localization of cathepsin B and H in human pancreatic endocrinecells and insulinoma cells. Histochem 1998; 93: 111–118.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Niedergethmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niedergethmann, M., Hildenbrand, R., Wolf, G. et al. Angiogenesis and cathepsin expression are prognostic factors in pancreatic adenocarcinoma after curative resection. International Journal of Pancreatology 28, 31–39 (2000). https://doi.org/10.1385/IJGC:28:1:31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/IJGC:28:1:31

Key Words

Navigation