Skip to main content
Log in

Angiopoietins are expressed in the normal rat pituitary gland

  • Basic Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Interaction of vascular endothelial growth factor (VEGF) with the angiopoietins (Ang) is an essential component of angiogenesis. Localization of VEGF in the anterior pituitary raises the possibility that Ang must be present in the pituitary gland as well. In this study Ang expression was detected in the normal rat pituitary gland at the gene level by reverse-transcriptase polymerase chain reaction and at the protein level by immunohistochemistry. The latter was analyzed by both light and confocal microscopy. Constitutive expression of Ang1, Ang2, and their receptor Tie2 was detected at both the mRNA and protein level in all the pituitary glands studied. Of interest was the localization of both Ang1 and Ang2 in scattered PAS positive adenohypophysial cells rather than in endothelial cells. Confocal microscopy showed colocalization of both Ang1 and Ang2 proteins within the same adenohypophysial cells. Dual immunostaining for Ang1 and the anterior pituitary hormones that show PAS positivity demonstrated colocalization of Ang1 with follicle stimulating hormone and luteinizing hormone. In the posterior pituitary, strong Ang1 signal observed in vascular endothelial cells masked the weak Ang2 signal, a pattern that is similar to that reported in brain endothelial cells. The presence of both angiopoietins and VEGF in the pituitary gland suggest that these ligands interact during angiogenesis as they are known to do in other systems to maintain the rich vascular network of the gland. This first report of angiopoietin localization in the rat pituitary gland opens a new line of investigation on angiogenesis in pituitary glands that will impact human endocrinology in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gross PM, Sposito NM, Pettersen SE, Fenstermacher JD. Differences in function and structure of the capillary endothelium in gray matter, white matter and a circumventricular organ of rat brain. Blood Vessels 23:261–270, 1986.

    PubMed  CAS  Google Scholar 

  2. Jugenburg M, Kovacs K, Stefaneanu L, Scheithauer BW. Vasculature in nontumorous hypophyses, pituitary adenomas, and carcinomas: a quantitative morphological study. Endocr Pathol 6:115–124, 1995.

    PubMed  Google Scholar 

  3. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JAH. Angiogenesis in pituitary adenomas and the normal pituitary gland. J Clin Endocrinol Metab 85:1159–1162, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Viacava P, Gasperi M, Acerbi G, et al. Microvascular density and vascular endothelial growth factor expression in normal pituitary tissue and pituitary adenomas. J Endocrinol Invest 26:23–28, 2003.

    PubMed  CAS  Google Scholar 

  5. Vidal S, Scheithauer BW, Kovacs K. Vascularity in nontumorous human pituitaries and incidental microadenomas: a morphometric study. Endocr Pathol 11:215–227, 2000.

    Article  PubMed  Google Scholar 

  6. Lloyd RV, Vidal S, Horvath E, Kovacs K, Scheithauer B. Angiogenesis in normal and neoplastic pituitary tissues. Micros Res Tech 60:244–250, 2003.

    Article  CAS  Google Scholar 

  7. Gospodarowicz D, Abraham JA, Schilling J. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo-stellate cells. Proc Natl Acad Sci USA 86:7311–7315, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Turner HE, Harris AL, Melmed S, Wass JAH. Angiogenesis in endocrine tumors. Endocr Rev 24:600–632, 2003.

    Article  PubMed  CAS  Google Scholar 

  9. Ochoa AL, Mitchner NA, Paynter CD, Morris RE, Ben-Jonathan N. Vascular endothelial growth factor in the rat pituitary: differential distribution and regulation by estrogen. J Endocrinol 165:483–492, 2000.

    Article  PubMed  CAS  Google Scholar 

  10. Lloyd RV, Scheithauer BW, Kuroki T, Vidal S, Kovacs K, Stefaneanu L. Vascular endothelial growth factor VEGF) expression in human pituitary adenomas and carcinomas. Endocr Pathol 10:229–235, 1999.

    PubMed  CAS  Google Scholar 

  11. Turner HE, Nagy Z S, Bromhall L, Esiri MM, Harris AL, Wass JAH. Vascular endothelial growth factor is elevated in patients with pituitary tumors. J Endocrinol 161:P215, 2000.

    Google Scholar 

  12. Vidal S, Lloyd RV, Moya L, Scheithauer BW, Kovacs K. Expression and distribution of vascular endothelial growth factor receptor flk-1 in the rat pituitary. J Histochem Cytochem 50:533–540, 2002.

    PubMed  CAS  Google Scholar 

  13. Ferrara N, Houck K, Jakeman L, Leung DW. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13:18–32, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Hanahan D. Signaling vascular morphogenesis and maintenance. Science 277:48–50, 1997.

    Article  PubMed  CAS  Google Scholar 

  15. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60, 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Peters KG. Vascular endothelial growth factor and the angiopoietins: working together to build a better blood vessel. Circ Res 83:342–343, 1998.

    PubMed  CAS  Google Scholar 

  17. Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-1, a ligand for the Tie2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169, 1996.

    Article  PubMed  CAS  Google Scholar 

  18. Valenzuela DM, Griffiths J, Rojas J, et al. Angiopoietin 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci USA 96:1904–1909, 1999.

    Article  PubMed  CAS  Google Scholar 

  19. Dumont DJ, Gradwohl GJ, Fong GH, Auerbach R, Breitman ML. The endothelial-specific receptor tyrosine kinase, tek, is a member of a new subfamily of receptors. Oncogene 8:1293–1301, 1993.

    PubMed  CAS  Google Scholar 

  20. Carmeliet P, Ferreira V, Breier G, et al. Normal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439, 1996.

    Article  PubMed  CAS  Google Scholar 

  21. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Gerber HP, Hillan KJ, Ryan AM, et al. VEGF is required for growth and survival in neonatal mice. Development 126:1149–1159, 1999.

    PubMed  CAS  Google Scholar 

  23. Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, Li LY. Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res 58:224–237, 1999.

    Article  PubMed  CAS  Google Scholar 

  24. Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 79:213–223, 1999.

    PubMed  CAS  Google Scholar 

  25. Yuan HT, Suri C, Landon DN, Yancopoulos GD, Woolf AS. Angiopoietin-2 is a site specific factor in the differentiation of mouse renal vasculature. J Am Soc Nephrol 11:1055–1066, 2000.

    PubMed  CAS  Google Scholar 

  26. Nourhaghighi N, Teichert-Kuliszewska, K, Davis J, Stewart, DJ, Nag S. Altered expression of angiopoietins during BBB breakdown and angiogenesis. Lab Invest 83:1211–1222, 2003.

    Article  PubMed  CAS  Google Scholar 

  27. Nag S. Immunohistochemical detection of endothelial proteins. Methods Mol Med 89:491–503, 2003.

    Google Scholar 

  28. Otani A, Takagi H, Oh H, Koyama S, Honda Y. Angiotensin II induces expression of the Tie-2 receptor ligand, angiopoietin-2, in bovine retinal endothelial cells. Diabetes 50:867–875, 2001.

    Article  PubMed  CAS  Google Scholar 

  29. Goede V, Schmidt T, Kimmina S, Kozian D, Augustin HG. Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab Invest 78:1385–1394, 1998.

    PubMed  CAS  Google Scholar 

  30. Horner A, Bord S, Kelsall AW, Coleman N, Compston JE. Tie-2 ligands angiopoietin-1 and angiopoietin-2 are coexpressed with vascular endothelial growth factor in growing human bone. Bone 28:65–71, 2001.

    Article  PubMed  CAS  Google Scholar 

  31. Fan L, Iseki S. Immunohistochemical localization of vascular endothelial growth factor in the endocrine glands of the rat. Arch Histol Cytol 61:17–28, 1998.

    PubMed  CAS  Google Scholar 

  32. Vidal SV, Kovacs K, Cohen SM, Stefaneanu L, Lloyd RV, Scheithauer BW. Localization of vascular endothelial growth factor in non-tumorous human pituitaries. Endocr Pathol 10:109–122, 1999.

    Google Scholar 

  33. Anasti JN, Kalantaridou SN, Kimzey LM, George M, Nelson LM. Human follicle fluid vascular endothelial growth factor concentrations are correlated with luteinization in spontaneously developing follicles. Hum Reprod 13:1144–1147, 1998.

    Article  PubMed  CAS  Google Scholar 

  34. Artini PG, Monti M, Fasciani A, Tartaglia ML, D’Ambrogio G, Genazzani AR. Correlation between the amount of follicle stimulating hormone administered and plasma and follicular fluid vascular endothelial growth factor concentrations in women undergoing in vitro fertilization. Gynecol Endocrinol 12:243–247, 1998.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukriti Nag MD, PhD, FRCPC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nag, S., Nourhaghighi, N., Venugopalan, R. et al. Angiopoietins are expressed in the normal rat pituitary gland. Endocr Pathol 16, 67–73 (2005). https://doi.org/10.1385/EP:16:1:067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/EP:16:1:067

Key Words

Navigation