Skip to main content
Log in

Immunomodulatory functions of the diffuse neuroendocrine system: Implications for bronchopulmonary dysplasia

  • Review
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Pulmonary neuroendocrine (NE) cells are believed to be the precursor of NE lung carcinomas, including well-differentiated (carcinoids) and moderately/poorly differentiated (atypical carcinoids and small-cell carcinomas, SCLCs) subtypes. In early studies, we determined mechanisms by which NE cell-derived peptides such as bombesin-like peptide (BLP) promote normal fetal lung development. Postnatally, BLP may normally regulate perinatal adaptation of the pulmonary circulation. However, elevated BLP levels in premature infants shortly after birth predict which infants are at high risk for developing bronchopulmonary dysplasia (BPD, chronic lung disease of newborns). An anti-BLP blocking antibody abrogates clinical and pathological evidence of lung injury in two baboon models of BPD. These observations indicate that BLP mediates lung injury in BPD, supporting a role for BLP as pro-inflammatory cytokines. We have directly tested the effects of BLP on eliciting inflammatory cell infiltrates in vivo. Surprisingly, mast cells are the major responding cell population. These data suggest that the diffuse NE system may be a newly recognized component of innate immunity in multiple organ systems. We speculate that overproduction of NE cell-derived peptides such as BLP may be responsible for a variety of chronic inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anastasi A, Erspamer V, Bucci M. Isolation and structure of bombesin and alytesin, two analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 27:166–169, 1971.

    Article  PubMed  CAS  Google Scholar 

  2. McDonald TJ, Jornvall H, Nilsson G, Vagne M, Ghatei M, Bloom SR, Mutt V. Characterization of a gastrin-releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun 90:227–233, 1979.

    Article  PubMed  CAS  Google Scholar 

  3. Spindel ER, Chin WW, Price J, Rees LH, Besser GM, Habener JF. Cloning and characterization of cDNAs encoding human gastrin-releasing peptide. Proc Natl Acad Sci USA 81:5699–5703, 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Sausville EA, Lebacq-Verheyden AM, Spindel ER, Cuttitta F, Gazdar AF, Battey JF. Expression of the gastrin-releasing peptide gene in human small cell lung cancer: Evidence for alternative processing resulting in three distinct mRNAs. J Biol Chem 261:2451–2457, 1986.

    PubMed  CAS  Google Scholar 

  5. Lebacq-Verheyden AM, Krystal G, Sartor O, Way J, Battey JF. The prepro gastrin releasing peptide gene is transcribed from two initiation sites in the brain. Mol Endocrinol 2:556–563, 1988.

    PubMed  CAS  Google Scholar 

  6. Sunday ME, Kaplan LM, Motoyama E, Chin WW, Spindel ER. Biology of disease: Gastrin-releasing peptide (mammalian bombesin) gene expression in health and disease. Lab Invest 59:5–24, 1988.

    PubMed  CAS  Google Scholar 

  7. Nagalla SR, Barry BJ, Spindel ER. Cloning of complementary DNAs encoding the amphibian bombesin-like peptides Phe8 and Leu8 phyllolitorin from Phyllomedusa sauvagei: potential role of U to C RNA editing in generating neuropeptide diversity. Mol Endocrinol 8:943–951, 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Erspamer V. Amphibian skin peptides in mammals—looking ahead. Trends Neurosci 6:200–201, 1983.

    Article  CAS  Google Scholar 

  9. Minna J. Bombesin receptor gene cloned. Science 249:1377, 1990.

    Article  Google Scholar 

  10. Battey J, Wada E. Two distinct receptor subtypes for mammalian bombesin-like peptides. Trends Neurosci 14:524–528, 1991.

    Article  PubMed  CAS  Google Scholar 

  11. Battey JF, Way JM, Corjay MH, et al. Molecular cloning of the bombesin/gastrin-releasing peptide receptor from Swiss 3T3 cells. Proc Natl Acad Sci USA 88:395–399, 1991.

    Article  PubMed  CAS  Google Scholar 

  12. Spindel ER, Giladi E, Brehm P, Goodman RH, Segerson TP. Cloning and functional characterization of a complementary DNA encoding the murine fibroblast bombesin/gastrin-releasing peptide receptor. Mol Endocrinol 4:1956–1963, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Lach E, Haddad EB, Gies JP. Contractile effect of bombesin on guinea pig lung in vitro: involvement of gastrin-releasing peptide-preferring receptors. Am J Physiol 264:L80-L86, 1993.

    PubMed  CAS  Google Scholar 

  14. Gorbulev V, Akhundova A, Buchner H, Fahrenholz F. Molecular cloning of a new bombesin receptor subtype expressed in uterus during pregnancy. Eur J Biochem 208:405–410, 1992.

    Article  PubMed  CAS  Google Scholar 

  15. Fathi Z, Corjay MH, Shapira H, et al. BRS-3: A novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells. J Biol Chem 268:5979–5984, 1993.

    PubMed  CAS  Google Scholar 

  16. Shan L, Emanuel RL, Dewald D, et al. Bombesin-like peptide (BLP) receptor gene expression, regulation, and function in fetal murine lung. Am J Physiol Lung Cell Mol Physiol 286:L165–173, 2004.

    Article  PubMed  CAS  Google Scholar 

  17. Fischer JB, Schonbrunn A. The bombesin receptor is coupled to a guanine nucleotide-binding protein which is insensitive to pertussis and cholera toxins. J Biol Chem 263:2808–2816, 1988.

    PubMed  CAS  Google Scholar 

  18. Zachary I, Rozengurt E. Focal adhesion kinase (p125FAK): A point of convergence in the action of neuropeptides, integrins, and oncogenes. Cell 71:891–894, 1992.

    Article  PubMed  CAS  Google Scholar 

  19. Rozengurt E. Neuropeptides as cellular growth factors: role of multiple signalling pathways. Eur J Clin Invest 21:123–134, 1991.

    PubMed  CAS  Google Scholar 

  20. Wada E, Battey J, Wray S. Bombesin receptor gene expression in rat embryos: transient GRP-R gene expression in the posterior pituitary. Mol Cell Neurosci 4:13–24, 1993.

    Article  CAS  PubMed  Google Scholar 

  21. King KA, Torday JS, Sunday ME. Bombesin and [leu8]phyllolitorin promote fetal mouse lung branching morphogenesis via a specific receptor-mediated mechanism. Proc Natl Acad Sci USA 92:4357–4361, 1995.

    Article  PubMed  CAS  Google Scholar 

  22. Wang D, Yeger H, Cutz E. Expression of gastrin releasing peptide receptor gene in developing lung. Am J Respir Cell Mol Biol 14:409–416, 1996.

    PubMed  CAS  Google Scholar 

  23. Li K, Nagalla SR, Spindel ER. A rhesus monkey model to characterize the role of gastrin-releasing peptide (GRP) in lung development. J Clin Invest 94:1605–1615, 1994.

    PubMed  CAS  Google Scholar 

  24. Brimhall BB, Sikorski KA, Torday J, Shahsafaei A, Haley KJ, Sunday ME. Syntaxin 1A is transiently expressed in fetal lung mesenchymal cells: potential developmental roles. Am J Physiol Lung Cell Mol Physiol 277:L401-L411, 1999.

    CAS  Google Scholar 

  25. Sunday ME, Hua J, Dai HB, Nusrat A, Torday JS. Bombesin increases fetal lung growth and maturation in utero and in organ culture. Am J Respir Cell Mol Biol 3:199–205, 1990.

    PubMed  CAS  Google Scholar 

  26. Wharton J, Polak JM, Bloom SR, et al. Bombesin-like immunoreactivity in the lung. Nature 273:769–770, 1978.

    Article  PubMed  CAS  Google Scholar 

  27. Minna JD, Cuttitta F, Battey JF, et al. Gastrin-releasing peptide and other autocrine growth factors in lung cancer: pathogenetic and treatment implications. In: DeVita VT, Hellman S, Rosenberg SA, eds. Important Advances in Oncology, Philadelphia, PA: Lippincott, 1988; 55–64.

    Google Scholar 

  28. Siegfried JM, Guentert PJ, Gaither AL. Effects of bombesin and gastrin-releasing peptide on human bronchial epithelial cells from a series of donors: Individual variation and modulation by bombesin analogs. Anat Rec 236:241–247, 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Rozengurt E, Sinnett-Smith J. Early signals underlying the induction of the c-fos and c-myc genes in quiescent fibroblasts: studies with bombesin and other growth factors. Prog Nucleic Acid Res Mol Biol 35:261–295, 1988.

    PubMed  CAS  Google Scholar 

  30. Cuttitta F, Carney DN, Mulshine J, et al. Bombesin-like peptides can function as autocrine growth factors in human small cell cancer. Nature 316:823–826, 1985.

    Article  PubMed  CAS  Google Scholar 

  31. Impicciatore M, Bertaccini G. The bronchoconstrictor action of the tetradecapeptide bombesin in the guinea-pig. J Pharm Pharmacol 25:872–875, 1973.

    PubMed  CAS  Google Scholar 

  32. Erspamer GF, Mazzanti G, Farruggia G, Nakajima T, Yanaihara N. Parallel bioassay of litorin and phyllolitorins on smooth muscle preparations. Peptides 5:765–768, 1984.

    Article  CAS  Google Scholar 

  33. Sunday ME, Hua J, Reyes B, Masui H, Torday JS. Anti-bombesin antibodies modulate fetal mouse lung growth and maturation in utero and in organ cultures. Anat Rec 236:25–32, 1993.

    Article  PubMed  CAS  Google Scholar 

  34. Kim JS, McKinnis VS, White SR. Migration of guinea pig airway epithelial cells in response to bombesin analogues. Am J Respir Cell Mol Biol 16:259–266, 1997.

    PubMed  CAS  Google Scholar 

  35. Ruff M, Schiffmann E, Terranova V, Pert CB. Neuropeptides are chemoattractants for human tumor cells and monocytes: A possible mechanism for metastasis. Clin Immunol Immunopathol 37:387–396, 1985.

    Article  PubMed  CAS  Google Scholar 

  36. De la Fuente M, Del Rio M, Ferrandez MD, Hernanz A. Modulation of phagocytic function in murine peritoneal macrophages by bombesin, gastrin-releasing peptide and neuromedin C. Immunology 73:205–211, 1991.

    PubMed  Google Scholar 

  37. Meloni F, Ballabio P, Bianchi L, et al. Bombesin enhances monocyte and macrophage activities: possible role in the modulation of local pulmonary defenses in chronic bronchitis. Respiration 63:28–34, 1996.

    PubMed  CAS  Google Scholar 

  38. Meloni F, Bertoletti R, Corsico A, Di Fazio P, Cecchettin M, Gialdroni-Grassi G. Bombesin/gastrin releasing peptide levels of peripheral mononuclear cells, monocytes and alveolar macrophages in chronic bronchitis. Int J Tissue Reactions 14:195–201, 1992.

    CAS  Google Scholar 

  39. Yule KA, White SR. Migration of 3T3 and lung fibroblasts in response to calcitonin gene-related peptide and bombesin. Exp Lung Res 25:261–273, 1999.

    Article  PubMed  CAS  Google Scholar 

  40. Kelley MJ, Linnoila RI, Avis IL, et al. Antitumor activity of a monoclonal antibody directed against gastrin-releasing peptide in patients with small cell lung cancer. Chest 112:256–261, 1997.

    PubMed  CAS  Google Scholar 

  41. Wang LH, Coy DH, Taylor JE, et al. Desmethionine alkylamide bombesin analogues: a new class of bombesin receptor antagonists with potent antisecretory activity in pancreatic acini and antimitotic activity in Swiss 3T3 cells. Biochem 29:616–622, 1990.

    Article  CAS  Google Scholar 

  42. Wang LH, Coy DH, Taylor JE, et al. Desmethionine alkylamide bombesin analogues: a new class of bombesin. Biochem 29:616–622, 1990.

    Article  CAS  Google Scholar 

  43. King KA, Hua J, Torday JS, et al. CD10/Neutral endopeptidase regulates fetal lung growth and maturation in utero by potentiating endogenous bombesin-like peptides. J Clin Invest 91:1969–1973, 1993.

    PubMed  CAS  Google Scholar 

  44. Sunday ME, Hua J, Torday J, Reyes B, Shipp MA. CD10/neutral endopeptidase 24.11 in developing human fetal lung: patterns of expression and modulation of peptide-mediated proliferation. J Clin Invest 90:2517–2525, 1992.

    PubMed  CAS  Google Scholar 

  45. Emanuel RL, Torday JS, Mu Q, Asokananthan N, Sikorski KA, Sunday ME. Bombesin-like peptides and receptors in normal fetal baboon lung: roles in lung growth and maturation. Am J Physiol 277:L1003-L1017, 1999.

    PubMed  CAS  Google Scholar 

  46. Aguayo SM, Kane MA, King TE, Schwarz MI, Grauer L, Miller YE. Increased levels of bombesin-like peptides in the lower respiratory tract of asymptomatic cigarette smokers. J Clin Invest 84:1105–1113, 1989.

    PubMed  CAS  Google Scholar 

  47. Fraslon C, Bourbon JR. Comparison of effects of epidermal and insulin-like growth factors, gastrin releasing peptide and retinoic acid on fetal lung cell growth and maturation in vitro. Biochim Biophysica Acta 1123:65–75, 1992.

    CAS  Google Scholar 

  48. Koh S, Yamamoto A, Inoue A, et al. Immunoelectron microscopic localization of the HPC-1 antigen in rat cerebellum. J Neurocytol 22:995–1005, 1993.

    Article  PubMed  CAS  Google Scholar 

  49. Masaki R, Yamamoto A, Akagawa K, Tashiro Y. Important roles of the C-terminal portion of HPC-1/syntaxin 1A in membrane anchoring and intracellular localization. J Biochem 124:311–318, 1998.

    PubMed  CAS  Google Scholar 

  50. Inoue A, Akagawa K. Neuron-specific expression of a membrane protein, HPC-1: tissue distribution, and cellular and subcellular localization of immunoreactivity and mRNA. Molec Brain Res 19:121–128, 1993.

    Article  PubMed  CAS  Google Scholar 

  51. Sesack SR, Snyder CL. Cellular and subcellular localization of syntaxin-like immunore-activity in the rat striatum and cortex. Neuroscience 67:993–1007, 1995.

    Article  PubMed  CAS  Google Scholar 

  52. Akagawa K, Barnstable CJ. Identification and characterization of cell types in monolayer cultures of rat retina using monoclonal antibodies. Brain Res 383:110–120, 1986.

    Article  PubMed  CAS  Google Scholar 

  53. Kong Y, Glickman J, Subramaniam M, et al. Functional diversity of notch family genes in fetal lung development. Am J Physiol Lung Cell Mol Physiol 286:L1075–1083, 2004.

    Article  PubMed  CAS  Google Scholar 

  54. Jan YN, Jan LY. HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75:827–830, 1993.

    Article  PubMed  CAS  Google Scholar 

  55. Wakamatsu Y, Maynard TM, Weston JA. Fate determination of neural crest cells by NOTCH-mediated lateral inhibition and asymmetrical cell division during gangliogenesis. Development 127:2811–2821, 2000.

    PubMed  CAS  Google Scholar 

  56. Campos-Ortega JA. Genetic and molecular bases of neurogenesis in Drosophila melanogaster. Annu Rev Neurosci 14:399–420, 1991.

    Article  PubMed  CAS  Google Scholar 

  57. Isaac DD, Andrew DJ. Tubulogenesis in Drosophila: a requirement for the trachealess gene product. Genes & Develop 10:103–117, 1996.

    Article  CAS  Google Scholar 

  58. Kent G, Iles R, Bear CE, et al. Lung disease in mice with cystic fibrosis. J Clin Invest 100:3060–3069, 1997.

    PubMed  CAS  Google Scholar 

  59. Artavanis-Tsakonas S, Delidakis C, Fehon RG. The notch locus and the cell biology of neuroblast segregation. Annu Rev Cell Biol 7:427–452, 1991.

    Article  PubMed  CAS  Google Scholar 

  60. Fehon RG, Johansen K, Rebay I, Artavanis-Tsakonas S. Complex cellular and subcellular regulation of Notch expression during embryonic and imaginal development of Drosophila: implications for Notch function. J Cell Biol 113:657–669, 1991.

    Article  PubMed  CAS  Google Scholar 

  61. Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66:649–661, 1991.

    Article  PubMed  CAS  Google Scholar 

  62. Schroeder T, Just U. Notch signalling via RBP-J promotes myeloid differentiation. EMBO J 19:2558–2568, 2000.

    Article  PubMed  CAS  Google Scholar 

  63. Anderson AC, Robey EA, Huang YH. Notch signaling in lymphocyte development. Curr Opin Genetics & Develop 11:554–560, 2001.

    Article  CAS  Google Scholar 

  64. Karanu FN, Murdoch B, Miyabayashi T, et al. Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood 97:1960–1967, 2001.

    Article  PubMed  CAS  Google Scholar 

  65. Pui JC, Allman D, Xu L, et al. Notch 1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11:299–308, 1999.

    Article  PubMed  CAS  Google Scholar 

  66. Aster J, Pear W, Hasserjian R, et al. Functional analysis of the TAN-1 gene, a human homolog of Drosophila notch. Cold Spring Harbor Symp Quant Biol 59:125–136, 1994.

    PubMed  CAS  Google Scholar 

  67. Rangarajan A, Talora C, Okuyama R, et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 20:3427–3436, 2001.

    Article  PubMed  CAS  Google Scholar 

  68. Jaleco AC, Neves H, Hooijberg E, et al. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J Exp Med 194:991–1002, 2001.

    Article  PubMed  CAS  Google Scholar 

  69. Gridley T. Notch signaling during vascular development. Proc Natl Acad Sci USA 98:5377–5378, 2001.

    Article  PubMed  CAS  Google Scholar 

  70. Austin CP, Feldman DE, Ida JA, Jr., Cepko CL. Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121:3637–3650, 1995.

    PubMed  CAS  Google Scholar 

  71. Borges M, Linnoila RI, van de Velde HJ, et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386:852–855, 1997.

    Article  PubMed  CAS  Google Scholar 

  72. Han RNN, Mawdsley C, Souza P, Tanswell AK, Post M. Platelet-derived growth factors and growth-related genes in rat lung. III. Immunolocalization during fetal development. Pediatr Res 31:323–329, 1992.

    PubMed  CAS  Google Scholar 

  73. Bostrom H, Willetts K, Pekny M, et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85:863–873, 1996.

    Article  PubMed  CAS  Google Scholar 

  74. Souza P, Sedlackova L, Kuliszewski M, et al. Antisense oligodeoxynucleotides targeting PDGF-B mRNA inhibit cell proliferation during embryonic rat lung development. Development 120:2163–2173, 1994.

    PubMed  CAS  Google Scholar 

  75. Souza P, Tanswell AK, Post M. Different roles for PDGF-α and -β receptors in embryonic lung development. Am J Respir Cell Mol Biol 15:551–562, 1996.

    PubMed  CAS  Google Scholar 

  76. Plopper CG, St. George JA, Read LC, et al. Acceleration of alveolar type II cell differentiation in fetal rhesus monkey lung by administration of EGF. Am J Physiol Lung Cell Mol Physiol 262:L313-L321, 1992.

    CAS  Google Scholar 

  77. Sen N, Cake MH. Enhancement of disaturated phosphatidylcholine synthesis by epidermal growth factor in cultured fetal lung cells involves a fibroblast-epithelial cell interaction. Am J Respir Cell Mol Biol 5:337–343, 1991.

    PubMed  CAS  Google Scholar 

  78. Raaberg L, Nex E, Buckley S, Luo W, Snead ML, Warburton D. Epidermal growth factor transcription, translation, and signal transduction by rat type II pneumocytes in culture. Am J Resp Cell Mol Biol 6:44–49, 1992.

    CAS  Google Scholar 

  79. Sunday ME. Bioactive peptides and lung development. In: Gaultier C, Bourbon JR, Post M, eds. Lung Development, New York, Oxford: Oxford University Press, 1999:304–326.

    Google Scholar 

  80. Johnson DE, Wobken JD, Landrum BG. Changes in bombesin, calcitonin and serotonin immunoreactive pulmonary neuroendocrine cells in cystic fibrosis and following prolonged mechanical ventilation. Am Rev Respir Dis 137:123–131, 1988.

    PubMed  CAS  Google Scholar 

  81. Aguayo SM, King TE, Waldron JA, Sherritt KM, Kane MA, Miller YE. Increased pulmonary neuroendocrine cells with bombesin-like immunoreactivity in adult patients with eosinophilic granuloma. J Clin Invest 86:838–844, 1990.

    PubMed  CAS  Google Scholar 

  82. Bousbaa H, Fleury-Feith J. Effects of a longstanding challenge on pulmonary neuroendocrine cells of actively sensitized guinea pigs. Am Rev Respir Dis 144:714–717, 1991.

    PubMed  CAS  Google Scholar 

  83. Sunday ME, Willett CG. Induction and spontaneous regression of intense pulmonary neuroendocrine cell differentiation in a model of preneoplastic lung injury. Cancer Res 52(suppl):2677S-2686S, 1992.

    PubMed  CAS  Google Scholar 

  84. Sunday ME, Willett CG, Patidar K, Graham SA, Kelly D. Modulation of oncogene and tumor suppressor gene expression in a hamster model of chronic lung injury with varying degrees of pulmonary neuroendocrine cell hyperplasia. Lab Invest 70:875–888, 1994.

    PubMed  CAS  Google Scholar 

  85. Haley KJ, Patidar K, Zhang F, Emanuel RL, Sunday ME. Tumor necrosis factor induces neuroendocrine differentiation in small cell lung carcinoma cell lines. Am J Physiol Lung Cell Mol Physiol 275:L311-L321, 1998.

    CAS  Google Scholar 

  86. Mabry M, Nakagawa T, Nelkin BD, et al. v-Ha-ras oncogene insertion: A model for tumor progression of human small cell lung cancer. Proc Natl Acad Sci USA 85:6523–6527, 1988.

    Article  PubMed  CAS  Google Scholar 

  87. Sunday ME, Haley KJ, Sikorski K, et al. Calcitonin driven v-Ha-ras induces multilineage pulmonary epithelial hyperplasias and neoplasms. Oncogene 18:4336–4347, 1999.

    Article  PubMed  CAS  Google Scholar 

  88. Johnston D, Hatzis D, Sunday ME. Expression of v-Ha-ras driven by the calcitonin/calcitonin gene-related peptide promoter: a novel transgenic murine model for medullary thyroid carcinoma. Oncogene 16:167–177, 1998.

    Article  PubMed  CAS  Google Scholar 

  89. Mabry M, Nakagawa T, Baylin S, Pettengill O, Sorenson G, Nelkin B. Insertion of the v-Ha-ras oncogene induces differentiation of calcitonin-producing human small cell lung cancer. J Clin Invest 84:194–199, 1989.

    PubMed  CAS  Google Scholar 

  90. Slebos RJC, Kibbelaar RE, Dalesio O, et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med 323:561–565, 1990.

    Article  PubMed  CAS  Google Scholar 

  91. Sunday ME, Willett CG, Graham SA, Oreffo VIC, Linnoila RI, Witschi H. Histochemical characterization of non-neuroendocrine tumors and neuroendocrine cell hyperplasia induced in hamster lung by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone with or without hyperoxia. Am J Pathol 147:740–752, 1995.

    PubMed  CAS  Google Scholar 

  92. Johnson DE, Anderson WR, Burke BA. Pulmonary neuroendocrine cells in pediatric lung disease: alterations in airway structure in infants with bronchopulmonary dysplasia. Anat Rec 236:115–119, 1993.

    Article  PubMed  CAS  Google Scholar 

  93. Sunday ME. Neuropeptides and lung development. In: McDonald JA, ed. Lung Growth and Development, New York: Dekker, 1997;401–494.

    Google Scholar 

  94. Youngson C, Nurse C, Yeger H, Cutz E. Oxygen sensing in airway chemoreceptors. Nature 365:153–155, 1993.

    Article  PubMed  CAS  Google Scholar 

  95. Northway WH, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline membrane disease. N Engl J Med 276:357–368, 1967.

    Article  PubMed  Google Scholar 

  96. Johnson DE, Lock JE, Elde RP, Thompson TR. Pulmonary neuroendocrine cells in hyaline membrane disease and bronchopulmonary dysplasia. Pediatr Res 16:446–454, 1982.

    PubMed  CAS  Google Scholar 

  97. Parad RB, Berger TM. Chronic lung disease. In: Cloherty JP, Stark AR, eds. Manual of neonatal care. Philadelphia-New York: Lippincott-Raven, 1998;378–388.

    Google Scholar 

  98. Hansen T, Corbet A. Chronic lung disease—bronchopulmonary dysplasia. In: Taeusch HW, Ballard RA, Avery ME, eds. Diseases of the newborn. Toronto: W.B. Saunders Co., 1991;519–526.

    Google Scholar 

  99. Abman SH, Groothius JR. Pathophysiology and treatment of bronchopulmonary dysplasia. Current issues. Pediatr Clin North Am 41:277–315, 1994.

    PubMed  CAS  Google Scholar 

  100. Ireys HT, Anderson GF, Shaffer TJ, Neff JM. Expenditures for care of children with chronic illnesses enrolled in the Washington State Medicaid program, fiscal year 1993. Pediatrics 100:197–204, 1997.

    Article  PubMed  CAS  Google Scholar 

  101. Jobe AH. Pulmonary surfactant therapy. N Engl J Med 328:861–868, 1993.

    Article  PubMed  CAS  Google Scholar 

  102. Jobe AH, Mitchell BR, Gunkel H. Beneficial effects of the combined use of prenatal corticosteroids and postnatal surfactant on preterm infants. Am J Obstet Gynecol 168:508–513, 1993.

    PubMed  CAS  Google Scholar 

  103. Parker RA, Lindstrom DP, Cotton RB. Improved survival accounts for most, but not all of the increase in bronchopulmonary dysplasia. Pediatrics 90:663–668, 1992.

    PubMed  CAS  Google Scholar 

  104. Avery ME, Tooley WH, Keller JB, et al. Is chronic lung disease in low birth weight infants preventable? A survey of eight centers. Pediatr 79:26–30, 1987.

    CAS  Google Scholar 

  105. Watterberg KL, Derners LM, Scott SM, Murphy S. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatr 97:210–215, 1996.

    CAS  Google Scholar 

  106. Konishi M, Fujiwara T, Naito T, et al. Surfactant replacement therapy in neonatal respiratory distress syndrome. Eur J Pharmacol 147:20–25, 1988.

    CAS  Google Scholar 

  107. Feinberg E, Richardson DK, Als H, Sell E, Parad RB. Late pulmonary outcomes poorly predicted by early risk factors in very low birth weight infants. Pediatr Res 39:263A, 1997.

    Google Scholar 

  108. Escobedo MB, Hilliard JL, Smith F, et al. A baboon model of bronchopulmonary dysplasia: I. clinical features. Exp Mol Pathol 37:323–334, 1982.

    Article  PubMed  CAS  Google Scholar 

  109. Coalson JJ, Kuehl TJ, Escobedo MB, et al. A baboon model of bronchopulmonary dysplasia: II. pathologic features. Exp Mol Pathol 37:335–350, 1982.

    Article  PubMed  CAS  Google Scholar 

  110. Coalson JJ, Winter VT, Siler-Khodr T, Yoder BA. Neonatal chronic lung disease in extremely immature baboons. Am J Respir Crit Care Med 160:1333–1346, 1999.

    PubMed  CAS  Google Scholar 

  111. Coalson JJ, Winter VT, Siler-Khodr T, Yoder BA. Neonatal chronic lung disease in extremely immature baboons. Am J Respir Crit Care Med 160:1333–1346, 1999.

    PubMed  CAS  Google Scholar 

  112. Sunday ME, Yoder BA, Cuttitta F, Haley KJ, Emanuel RL. Bombesin-like peptide mediates lung injury in a baboon model of bronchopulmonary dysplasia. J Clin Invest 102:584–594, 1998.

    PubMed  CAS  Google Scholar 

  113. Sunday ME, Yoder BA, Torday JS, Sikorski KA, Cuttitta F, Emanuel RL. Bombesin-like peptide (BLP) as a mediator of lung injury in two different baboon models of bronchopulmonary dysplasia. FASEB J 13(4):A1154 (abstract #857.4), 1999.

    Google Scholar 

  114. Subramaniam M, Sugiyama K, Coy D, Steiner C, Kong Y, Miller YE, Weller PF, Wada E, Sunday ME. Bombesin-like peptides and mast cell responses: relevance to bronchopulmonary dysplasia? Am J Respir Crit Care Med 168:601–611, 2003.

    Article  PubMed  Google Scholar 

  115. Sheng H, Enghild JJ, Bowler R, et al. Effects of metalloporphyrin catalytic antioxidants in experimental brain ischemia. Free Radical Biol Med 33:947–961, 2002.

    Article  CAS  Google Scholar 

  116. Chang L, Subramaniam M, Yoder BA, et al. A catalytic antioxidant attenuates alveolar structural remodeling in bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 167:57–64, 2003.

    Google Scholar 

  117. Groneck P, Gotze-Speer B, Oppermann M, Eiffert H, Speer CP. Association of pulmonary inflammation and increased microvascular permeability during the development of bronchopulmonary dysplasia: a sequential analysis of inflammatory mediators in respiratory fluids of high-risk preterm neonates. Pediatrics 93:712, 1994.

    PubMed  CAS  Google Scholar 

  118. Lyle RE, Tryka AF, Griffin WS, Taylor BJ. Tryptase immunoreactive mast cell hyperplasia in bronchopulmonary dysplasia. Pediatr Pulmonol 19:336–343, 1995.

    Article  PubMed  CAS  Google Scholar 

  119. Raghavender B, Smith JB. Eosinophil cationic protein in tracheal aspirates of preterm infants with bronchopulmonary dysplasia. J Pediatr 130:944–947, 1997.

    Article  PubMed  CAS  Google Scholar 

  120. Gharaee-Kermani M, Phan SH. The role of eosinophils in pulmonary fibrosis. Int J Molec Med 1:43–53, 1998.

    PubMed  CAS  Google Scholar 

  121. Pesci A, Bertorelli G, Gabrielli M, Olivieri D. Mast cells in fibrotic lung disorders. Chest 103:989–996, 1993.

    PubMed  CAS  Google Scholar 

  122. Reiser KM, Last JA. Early cellular events in pulmonary fibrosis. Exp Lung Res 10:331–355, 1986.

    PubMed  CAS  Google Scholar 

  123. Wasserman SL. The human lung mast cell. Env Health Persp 55:259–269, 1984.

    Article  CAS  Google Scholar 

  124. Ashour K, Sunday ME. Decreased alveolar development in fetal and newborn mice given bombesin. Pediatr Res 51(4)(Part 2 of 2):61A, Abstract 353, 2002.

  125. Toti P, Buonocore G, Tanganelli P, et al. Bronchopulmonary dysplasia of the premature baby: an immunohistochemical study. Pediatr Pulmonol 24:22–28, 1997.

    Article  PubMed  CAS  Google Scholar 

  126. Sun G, Stacey MA, Bellini A, Marini M, Mattoli S. Endothelin-1 induces bronchial myofibroblast differentiation. Peptides 18:1449–1451, 1997.

    Article  PubMed  CAS  Google Scholar 

  127. Northway WH, Jr. Commentary. Bronchopulmonary dysplasia: twenty-five years later. Pediatr 89:969–973, 1992.

    Google Scholar 

  128. Zetter BR. Angiogenesis and tumor metastasis. Ann Rev Med 49:407–424, 1998.

    Article  PubMed  CAS  Google Scholar 

  129. Beck L, D’Amore PA. Vascular development: cellular and molecular regulation. FASEB J 11:365–373, 1997.

    PubMed  CAS  Google Scholar 

  130. Munshi UK, Niu JO, Siddiq MM, Parton LA. Elevation of interleukin-8 and interleukin-6 precedes the influx of neutrophils in tracheal aspirates from preterm infants who develop bronchopulmonary dysplasia. Pediatr Pulmonol 24:331–336, 1997.

    Article  PubMed  CAS  Google Scholar 

  131. Brusselle GG, Kips JC, Tavernier JH, et al. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy 24:73–80, 1994.

    Article  PubMed  CAS  Google Scholar 

  132. Schwarze J, Cieslewicz G, Hamelmann E, et al. IL-5 and eosinophils are essential for the development of airway hyperresponsiveness following acute respiratory syncytial virus infection. J Immunol 162:2997–3004, 1999.

    PubMed  CAS  Google Scholar 

  133. Viola JP, Kiani A, Bozza PT, Rao A. Regulation of allergic inflammation and eosinophil recruitment in mice lacking the transcription factor NFAT1: role of interleukin-4 (IL-4) and IL-5. Blood 91:2223–2230, 1998.

    PubMed  CAS  Google Scholar 

  134. Matthaei KI, Foster P, Young IG. The role of interleukin-5 (IL-5) in vivo: studies with IL-5 deficient mice [Review]. Memorias do Instituto Oswaldo Cruz 92:63–68, 1997.

    PubMed  CAS  Google Scholar 

  135. Temann UA, Geba GP, Rankin JA, Flavell RA. Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med 188:1307–1320, 1998.

    Article  PubMed  CAS  Google Scholar 

  136. Mould AW, Ramsay AJ, Matthaei KI, Young IG, Rothenberg ME, Foster PS. The effect of IL-5 and eotaxin expression in the lung on eosinophil trafficking and degranulation and the induction of bronchial hyperreactivity. J Immunol 164:2142–2150, 2000.

    PubMed  CAS  Google Scholar 

  137. Zhu Z, Homer RJ, Wang Z, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 103:779–788, 1999.

    PubMed  CAS  Google Scholar 

  138. Lee JJ, McGarry MP, Farmer SC, et al. Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med 185:2143–2156, 1997.

    Article  PubMed  CAS  Google Scholar 

  139. Bozic CR, Lu B, Hopken UE, Gerard C, Gerard NP. Neurogenic amplification of immune complex inflammation. Science 273:1722–1725, 1996.

    Article  PubMed  CAS  Google Scholar 

  140. Hopken UE, Lu B, Gerard NP, Gerard C. Impaired inflammation responses in the reverse Arthus reaction through genetic deletion of the C5a receptor. J Exp Med 186:749–756, 1997.

    Article  PubMed  CAS  Google Scholar 

  141. Broide DH, Campbell K, Gifford T, Sriramarao P. Inhibition of eosinophilic inflammation in allergen-challenged, IL-1 receptor type 1-deficient mice is associated with reduced eosinophil rolling and adhesion on vascular endothelium. Blood 95:263–269, 2000.

    PubMed  CAS  Google Scholar 

  142. Pryhuber GS, O’Brien DP, Baggs R, et al. Ablation of tumor necrosis factor receptor type 1 (p55) alters oxygen-induced lung injury. Am J Physiol Lung Cell Mol Physiol 278:L1082-L1090, 2000.

    PubMed  CAS  Google Scholar 

  143. Ward NS, Waxman AB, Homer RJ, et al. Interleukin-6 induced protection in hyperoxic acute lung injury. Am J Respir Cell Mol Biol 22:535–542, 2000.

    PubMed  CAS  Google Scholar 

  144. Yang X, Wang S, Fan Y, Han X. IL-10 deficiency prevents IL-5 overproduction and eosinophilic inflammation in a murine model of asthma-like reaction. Eur J Immunol 30:382–391, 2000.

    Article  PubMed  CAS  Google Scholar 

  145. Waxman AB, Einarsson O, Seres T, et al. Targeted lung expression of interleukin-11 enhances murine tolerance of 100% oxygen and diminishes hyperoxia-induced DNA fragmentation. J Clin Invest 101:1970–1982, 1998.

    PubMed  CAS  Google Scholar 

  146. Minamino T, Christou H, Hsieh C-M, et al. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia, 2001. Proc. Natl Acad Sci USA 98:8798–8803.

    Article  PubMed  CAS  Google Scholar 

  147. Choi AMK, Alam J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol 15:9–19, 1996.

    PubMed  CAS  Google Scholar 

  148. Christou H, Morita T, Hsieh C-M, et al. Prevention of hypoxia-induced pulmonary hypertension by enhancement of endogenous heme oxygenase-1 in the rat. Circ Res 86:1224–1229, 2000.

    PubMed  CAS  Google Scholar 

  149. Contreras M, Hariharan N, Lewandoski JR, Ciesielski W, Koscik R, Zimmerman JJ. Bronchoalveolar oxyradical inflammatory elements herald bronchopulmonary dysplasia. Crit Care Med 24:29–37, 1996.

    Article  PubMed  CAS  Google Scholar 

  150. Parker RA, Lindstrom DP, Cotton RB. Evidence from twin study implies possible genetic susceptibility to bronchopulmonary dysplasia. Semin Perinatol 20:206–209, 1996.

    Article  PubMed  CAS  Google Scholar 

  151. Evans M, Palta M, Sadek M, Weinstein MR, Peters ME. Associations between family history of asthma, bronchopulmonary dysplasia, and childhood asthma in very low birth weight children. Am J Epidemiol 148:460–466, 1998.

    PubMed  CAS  Google Scholar 

  152. Nickerson BG, Taussig LM. Family history of asthma in infants with bronchopulmonary dysplasia. Pediatrics 65:1140–1144, 1980.

    PubMed  CAS  Google Scholar 

  153. Weitzman M, Gortmaker S, Walker DK, Sobol A. Maternal smoking and childhood asthma. Pediatrics 85:505–511, 1990.

    PubMed  CAS  Google Scholar 

  154. Martinez FD, Cline M, Burrows B. Increased incidence of asthma in children of smoking mothers. Pediatrics 89:21–26, 1992.

    PubMed  CAS  Google Scholar 

  155. Hanrahan JP, Tager IB, Segal MR, et al. The effect of maternal smoking during pregnancy on early infant lung function. Am Rev Respir Dis 145:1129–1135, 1992.

    PubMed  CAS  Google Scholar 

  156. Hoff C, Wertelecki W, BlackBurn WR, Mendenhall H, Wiseman H, Stumpe A. Trend associations of smoking with maternal, fetal and neonatal morbidity. Obstet Gynecol 68:317–321, 1986.

    PubMed  CAS  Google Scholar 

  157. Chen MF, Kimizuka G, Wang NS. Human fetal lung changes associated with maternal smoking during pregnancy. Pediatr Pulmonol 3:51–58, 1987.

    Article  PubMed  CAS  Google Scholar 

  158. Chen MF, Lewis SJ, Jagoe R, et al. Gastrin-releasing peptide gene products in mid-trimester human fetal lung with and without maternal smoking history during pregnancy. Pediatr Pulmonol 10:30–35, 1991.

    Article  PubMed  CAS  Google Scholar 

  159. Huang M-H, Friend DS, Sunday ME, et al. An intrinsic adrenergic system in mammalian heart. J Clin Invest 98:1298–1303, 1996.

    Article  PubMed  CAS  Google Scholar 

  160. Wuenschell CW, Sunday ME, Singh G, Minoo P, Slavkin HC, Warburton D. Embryonic mouse lung epithelial progenitor cells co-express immunohistochemical markers of diverse mature cell lineages. J Histochem Cytochem 44:113–123, 1996.

    PubMed  CAS  Google Scholar 

  161. Lemaire I. Bombesin-related peptides modulate interleukin-1 production by alveolar macrophages. Neuropeptides 20:217–223, 1991.

    Article  PubMed  CAS  Google Scholar 

  162. Lemaire I, Jones S, Khan MF. Bombesin-like peptides in alveolar macrophage: increased release in pulmonary inflammation and fibrosis. Neuropeptides 20:63–72, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary E. Sunday MD, PhD.

Additional information

This review is dedicated to the memory of Dr. Hugh Wolfe, one of the pioneers in the field of Endocrine Pathology. Hugh was much admired around the world as a leading scientist, an enthusiastic mentor, an ever-loyal friend, a cheerful neighbor, a beloved husband, and a proud father and grandfather. He died suddenly on September 6, 2001, and is greatly missed by all who knew him.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunday, M.E., Shan, L. & Subramaniam, M. Immunomodulatory functions of the diffuse neuroendocrine system: Implications for bronchopulmonary dysplasia. Endocr Pathol 15, 91–106 (2004). https://doi.org/10.1385/EP:15:2:091

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/EP:15:2:091

Key Words

Navigation