Skip to main content
Log in

Paraneoplastic endocrine syndromes: A review

  • Proceedings
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

The paraneoplastic endocrine syndromes (“ectopic” or “inappropriate” hormone production) comprise a wide array of symptom complexes associated with malignant or less commonly benign neoplasms. Most of the syndromes are associated with the production of peptide hormones, which, in some instances, have autocrine stimulatory effects. Hypercalcemia, the most common paraneoplastic endocrine syndrome, may be due to the systemic release of parathyroid hormone-related protein (PTHrP), factors that may be produced locally (cytokines), or by a combination of these mechanisms. A spectrum of other syndromes may be related to the production of specific hormones or growth factors, including insulin-like growth factor and fibroblast growth factor 23. Molecular mechanisms responsible for the development of these syndromes are poorly understood. Mutational events not only may initiate neoplastic transformation but may also lead to the activation (re-expression) of genes responsible for hormone production. Additionally, epigenetic events such as methylation may also be responsible for the development of these syndromes. It is likely that a multiplicity of genetic and epigenetic events may contribute to the development of paraneoplastic endocrine syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwala, SS. Paraneoplastic syndromes. Med Clin North Am 80:173–184, 1996.

    PubMed  CAS  Google Scholar 

  2. Baylin SB, Mendelsohn G. Ectopic (inappropriate) hormone production by tumors: mechanisms involved and the biological and clinical implications. Endocr Rev. 1:45–77, 1980.

    PubMed  CAS  Google Scholar 

  3. Gagel RF. Endocrine Manifestations of tumors: “ectopic” hormone production. In: Goldman L, ed. Cecil Textbook of Medicine. On-line edition. Philadelphia, PA: WB Saunders, 2000.

    Google Scholar 

  4. Johnson B. Paraneoplastic endocrine syndromes (Part 6, Section 1, Chapter 100) in Harrison’s Principles of Internal Medicine (on-line). Edited by E Braunwald, AS Fauci, KJ Isseuracker, et al.). New York, NY: McGraw-Hill, 2001–2003.

    Google Scholar 

  5. Strewler GJ. Humoral manifestations of malignancy. In: Larsen PR, Kronenberg HM, Melmed S, Polonsky KS, eds. Williams Textbook of Endocrinology. 10th ed. Philadelphia, PA: WB Saunders, 2003, pp. 1834–2573.

    Google Scholar 

  6. Turner HE, Wass JAH. Ectopic Hormone Syndromes. In: DeGroot LJ, Jameson JL, eds. Endocrinology, 4th ed. Philadelphia, PA: WB Saunders, 2001, pp. 2559–2573.

    Google Scholar 

  7. Brown WH. A case of pluriglandular syndrome: diabetes of bearded women. Lancet 2:1002, 1928.

    Google Scholar 

  8. Klemperer P. Parathyroid hyperplasia and bone destruction in generalized carcinomatosis. Surg Gynecol Obstet 36:11, 1923.

    Google Scholar 

  9. Case Records of the Massachusetts General Hospital (case 27461). N Engl J Med 225:789–791, 1941.

    Google Scholar 

  10. Davies M, Hayes ME, Yin JA, et al. Abnormal synthesis of 1,25-dihydroxyvitamin D in patients with malignant lymphoma. J Clin Endocrinol Metab 78:1202–1207, 1994.

    PubMed  CAS  Google Scholar 

  11. Vassilopoulou-Sellin, R, Newman, N, Taylor, SH, Guinee, VF. Incidence of hypercalcemia in patients with malignancy referred to a comprehensive cancer center. Cancer 71:1309–1312, 1993.

    PubMed  CAS  Google Scholar 

  12. Mundy G, Guise TA. Hypercalcemia of malignancy. Am J Med 103:134–145, 1997.

    PubMed  CAS  Google Scholar 

  13. Yoshimoto K, Yamasaki R, Sakai H, et al. Ectopic production of parathyroid hormone by small cell lung cancer in a patient with hypercalcemia. J Clin Endocrinol Metab 68:976–981, 1989.

    PubMed  CAS  Google Scholar 

  14. Rizzoli R, Pache JC, Didierjean L, et al. A thymoma as cause of true ectopic hyperparathyroidism. J Clin Endocrinol Metab 79:912–915, 1994.

    PubMed  CAS  Google Scholar 

  15. Philbrick WM. Parathyroid hormone related protein: Gene structure, biosynthesis, metabolism and regulation. In: Bilezekian J, ed. The parathyroid, basic and clinical concepts. 2nd ed. San Diego, CA: Academic Press, 2000, pp. 31–52.

    Google Scholar 

  16. Strewler, GJ. The physiology of parathyroid hormone related protein. N Engl J Med 342:177–185, 2000.

    PubMed  CAS  Google Scholar 

  17. Seymour JF, Gagel RF. Calcitriol: the major mediation of hypercalcemia in Hodgkin’s disease and non-Hodgkin’s lymphomas. Blood 82:1383–1384, 1993.

    PubMed  CAS  Google Scholar 

  18. Sorensen JB, Anderson MD, Hansen HH. Syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in malignant diseases. J Intern Med 238:97–110, 1995.

    PubMed  CAS  Google Scholar 

  19. Gainer H, Wray S. Oxytocin and vasopressin: from genes to peptides. Ann NY Acad Sci 652:14–28, 1992.

    PubMed  CAS  Google Scholar 

  20. Sausville E, Carney D, Batey J. The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem 260:10235–10241, 1985.

    Google Scholar 

  21. Pequeux, C, Breton, C, Hendrick, JC, et al. Oxytocin synthesis and oxytocin receptor expression by cell lines of human small cell carcinoma of the lung stimulate tumor growth through autocrine/paracrine signaling. Cancer Res 62:4623–4629, 2002.

    PubMed  CAS  Google Scholar 

  22. North, WG, Neuropeptide production by small cell carcinoma: vasopressin and oxytocin as plasma markers of disease. J Clin Endocrinol Metab 73:1316–1320, 1991.

    PubMed  CAS  Google Scholar 

  23. Bliss DP, Battey JF, Linnoila RI, et al. Expression of the atrial natriuretic factor gene in small cell lung cancer/tumors and tumor cell lines. J Natl Cancer Inst 82:305–310, 1990.

    PubMed  CAS  Google Scholar 

  24. Campling BG, Sarda IP, Baer K, et al. Secretion of atrial natriuretic peptide and vasopressin by small cell lung cancer. Cancer 75:2442–2451, 1995.

    PubMed  CAS  Google Scholar 

  25. Becker M, Aron DC. Ectopic ACTH syndrome and CRH mediated Cushing’s syndrome. Endocrinol Metab Clin North Amer 23:585–606, 1994.

    CAS  Google Scholar 

  26. Wajchenberg BL, Mendonca BB, Liberman B, et al. Ectopic adrenocorticotropin hormone syndrome. Endocr Rev 15:751–787, 1994.

    Google Scholar 

  27. Pfluger, KH, Gramse, M, Groop, C, Havemann, C. Ectopic ACTH production with autoantibody formation in a patient with acute myeloblastic leukemia. N Engl J Med 305:1632–1636, 1981.

    PubMed  CAS  Google Scholar 

  28. Yalow RS, Berson SA. Size heterogeneity of immunoreactive human ACTH in plasma and in extracts of pituitary glands and ACTH producing thymoma. Biochem Biophys Res Commun 44:439–445, 1971.

    PubMed  CAS  Google Scholar 

  29. Schteingart DE. Ectopic secretion of peptides of the proopiomelanocortin family. Endocrinol Metab Clin North Amer 20:453–471, 1991.

    CAS  Google Scholar 

  30. Black M, Carey FA, Farquhauson MA, et al. Expression of the pro-opiomelanocortin gene in lung neuroendocrine tumors; in situ hybridization and immunohistochemical studies. J Pathol 169:329–334, 1993.

    PubMed  CAS  Google Scholar 

  31. Upton GV, Amatruda TT. Evidence for the presence of tumor peptides with corticotropin-releasing factor-like activity in the ectopic ACTH syndrome. N Engl J Med 285:419–424, 1971.

    PubMed  CAS  Google Scholar 

  32. Mullen OA, van Werder K. Ectopic production of ACTH and CRH. J Steroid Biochem Mol Biol 43:403, 1992.

    Google Scholar 

  33. Faglia G, Aroso M, Bazzoni N. Ectopic acromegaly. Endocrinol Metab Clin North Amer 21:575–595, 1992.

    CAS  Google Scholar 

  34. Dayal Y, Lin HD, Tallberg K, et al. Immunocytochemical demonstration of growth hormone releasing factor in gastrointestinal and pancreatic endocrine tumors. Am J Pathol 85:13–20, 1986.

    CAS  Google Scholar 

  35. Sano T, Asa SL, Kovacs K. Growth hormone-releasing hormone producing tumors: clinical biochemical and morphological manifestations. Endocr Rev 9:357–373, 1988.

    PubMed  CAS  Google Scholar 

  36. Steiner H, Dahlback O, Waldenstrom J. Ectopic growth hormone production and osteoarthropathy in carcinomas of the bronchus. Lancet 1:783–785, 1968.

    PubMed  CAS  Google Scholar 

  37. Melmed S, Ezrin C, Kovacs K, et al. Acromegaly due to secretion of growth hormone by an ectopic pancreatic islet cell tumor. N Engl J Med 312:9–17, 1985.

    PubMed  CAS  Google Scholar 

  38. Beuschlein F, Strasburger CJ, Siegerstetter V, et al. Acromegaly caused by secretion of growth hormone by a non-Hodgkin’s lymphoma. N Engl J Med 342:1871–1876, 2000.

    PubMed  CAS  Google Scholar 

  39. Kaganowicz A, Farkouh NH, Frantz AG, et al. Ectopic growth hormone in ovaries and breast cancer. J Clin Endocrinol Metab 48:4–5, 1979.

    Google Scholar 

  40. Braunstein GD, Vaitukaitis JL, Carbone PP, et al. Ectopic production of human chorionic gonadotropin by neoplasms. Ann Int Med 78:39–45, 1973.

    PubMed  CAS  Google Scholar 

  41. Braunstein GD, Bridson WE, Glass A, et al. In vivo and in vitro production of human chorionic gonadotropin and alpha-fetoprotein by a virilizing hepatoblastoma. J Clin Endocrinol Metab 35:857–862, 1972.

    PubMed  CAS  Google Scholar 

  42. Braunstein GD, Kamder V, Rason J, et al. Widespread distribution of chorionic gonadotropin like substance in normal human tissue. J Clin Endocrinol Metab 49:917, 1979.

    PubMed  CAS  Google Scholar 

  43. Rivera RT, Pasion SG, Wong DT, et al. Loss of tumorigenic potential by human lung tumor cells in the presence of antisense RNA specific to the ectopically synthesized alpha subunit of human chorionic gonadotropin. J Cell Biol 108:2423–2434, 1989.

    PubMed  CAS  Google Scholar 

  44. Hirshberg B, Conn PM, Uwaifo GI, et al. Ectopic luteinizing hormone secretion and anovulation. N Engl J Med 348:312–317, 2003.

    PubMed  Google Scholar 

  45. Rosen SW, Weintraub BD. Humours, tumors and caveats. Ann Int Med 82:274–276, 1975.

    PubMed  CAS  Google Scholar 

  46. Weintraub BD, Rosen SW. Ectopic production of human chorionic somatomammotropin by non-trophoplastic cancer. J Clin Endocrinol Metab 32:94–101, 1971.

    PubMed  CAS  Google Scholar 

  47. Sheth NA, Suraiya JN, Sheth AR, et al. Ectopic production of human placental lactogen by human breast tumors. Cancer 39:1693–1699, 1977.

    PubMed  CAS  Google Scholar 

  48. Lowe WL, Roberts CT, LeRoith D, et al. Insulin-like growth factor-II in non-islet cell tumors associated with hypoglycemia: increased levels of messenger ribonucleic acid. J Clin Endocrinol Metab 69:1153–1159, 1989.

    PubMed  Google Scholar 

  49. Hizuka N, Fukuda I, Takano K, et al. Serum insulin-like growth factor II in 44 patients with non-islet cell tumor hypoglycemia. Endocr J 45:561–565, 1998.

    Google Scholar 

  50. Daughaday WH. Hypoglycemia in patients with non-islet cell tumors. Endocrinol Metab Clin North Am 18:91–101, 1989.

    PubMed  CAS  Google Scholar 

  51. Shapiro ET, Bell GI, Polonsky KS, et al. Tumor hypoglycemia: relationship to high molecular weight insulin-like growth factor II. J Clin Invest 85:1672–1679, 1990.

    PubMed  CAS  Google Scholar 

  52. Seckl MJ, Mulholland PJ, Bishop AE, et al. Hypoglycemia due to an insulin secreting small cell carcinoma of the cervix. N Engl J Med 341:733–736, 1999.

    PubMed  CAS  Google Scholar 

  53. DiMeglio LA, White KE, Econs MJ. Disorders of phosphate metabolism. Endocrinol Metab Clin North Am 29:591–609, 2000.

    PubMed  CAS  Google Scholar 

  54. Weidner N, Santa Cruz D. Phosphaturic mesenchymal tumors: a polymorphous group causing ostcomalacia or rickets. Cancer 59:1442–1454, 1981.

    Google Scholar 

  55. Terek RM, Nielsen GP. Case 29-2001. A 14-year old boy with abnormal bone and sacral mass. N Engl J Med 345:903–908, 2001.

    Google Scholar 

  56. Cai Q, Hodgson SF, Kao PC, et al. Brief report: inhibition of renal phosphate transport by a produce in a patient with osteogenic osteomalacia. N Engl J Med 330:1645–1649, 1994.

    PubMed  CAS  Google Scholar 

  57. Shimada T, Mizutani S, Muto T, et al. Cloning and characterization of FGF23 as a causative factor of tumor induced osteomalacia. Proc Natl Acad Sci USA 98:6500–6505, 2001.

    PubMed  CAS  Google Scholar 

  58. White KE, Jonsson KB, Carn G, et al. The autosomal dominant hypophosphatasemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J. Clin Endocrinol Metab 86:497–500, 2001.

    PubMed  CAS  Google Scholar 

  59. Jan de Beur SM, Finnegan RB, Vassiliadis J, et al. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res 17:1102–1110, 2002.

    CAS  Google Scholar 

  60. ADHR Consortium. Autosomal dominant hypophosphatemic rickets in associated with mutations in FGF23. Nat Genet 26:345–348, 2000.

    Google Scholar 

  61. Carpenter TO. New perspectives on the biology and treatment of X-linked hypophosphatemic rickets. Pediatr Clin North Am 44:443–466, 1997.

    PubMed  CAS  Google Scholar 

  62. Carpenter TO. Osteogenic osteomalacia—a complex dance of factors. N Engl J Med 348:1705–1708, 2003.

    PubMed  Google Scholar 

  63. Jonsson KB, Zahradnik R, Larsson T. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:1656–1663, 2003.

    PubMed  CAS  Google Scholar 

  64. HYP Consortium. A gene (PEX) with homologies to endopeptidase is mutated in patients with X-linked hypophosphatasemic rickets. Nat Genet 11:130–136, 1995.

    Google Scholar 

  65. Leckie BJ, Birnie G, Carachi R. Renin in Wilms’ tumor: pro-renin as an indicator. J Clin Endocrinol Metab 79:1742–1746, 1994.

    PubMed  CAS  Google Scholar 

  66. Spahr J, Demers LM, Schochat SJ. Renin producing Wilms’ tumor. J Pediatri Surg 16:32–34, 1981.

    CAS  Google Scholar 

  67. Hanger-Klevene JH. High plasma renin activity in an oat cell carcinoma. A renin secreting carcinoma. Cancer 26:1112–1114, 1970.

    Google Scholar 

  68. Anderson PW, Macaulay L, Do YS, et al. Extra-renal renin producing tumors: Insights into hypertension and ovarian renin production. Medicine 68:257–268, 1989.

    PubMed  CAS  Google Scholar 

  69. Turkington RW. Ectopic production of prolactin. N Engl J Med 285:1455, 1971.

    PubMed  CAS  Google Scholar 

  70. Clevenger CV, Chang WP, Ngo W, et al. Expression of prolactin and prolactin receptor in human breast carcinoma evidence of an autocrine/paracrine loop. Am J Pathol 146:695–705, 1995.

    PubMed  CAS  Google Scholar 

  71. Purnell DM, Hillman EA, Heathfield DM, Trump BF. Immunoreactive prolactin in epithelial cells of normal and cancerous human breast and prostate detected by the unlabeled antibody peroxidase antiperoxidase method. Cancer Res 42:2317–2324, 1982.

    PubMed  CAS  Google Scholar 

  72. Clevenger CV, Furth PA, Hankinson SE, Schuler LA. The role of prolactin I mammary carcinoma. Endocrin Rev 24:1–27, 2003.

    CAS  Google Scholar 

  73. Gould V, Chan W, Lee I, et al. Immunohistochemical evaluation of neuroendocrine cells and neoplasms of the lung. Pathol Res Pract 183:200–213, 1988.

    PubMed  CAS  Google Scholar 

  74. Coombes RC, Hillyard CJ, Greenberg PB, et al. Plasma immunoreactive calcitonin in patients with non-thyroid tumors. Lancet 1:1080–1082, 1974.

    PubMed  CAS  Google Scholar 

  75. Roos BA, Lindall AW, Baylin SB, et al. Plasma immunoreactive calcitonin in lung cancer. J Clin Endocrinol Metab 50:659–666, 1980.

    PubMed  CAS  Google Scholar 

  76. Foa P, Ortolani S, Pagliani Em, et al. Immunoreactive calcitonin: a tumor marker for myelogenous leukemia. Int J Biol Markers 5:27–30, 1990.

    PubMed  CAS  Google Scholar 

  77. Samaan NA, Castillo S, Schultz PN, et al. Serum calcitonin after pentagastrin stimulation in patients with bronchogenic and breast cancer compared to that in patients with medullary thyroid carcinoma. J Clin Endocrionol Metab 51:237–241, 1980.

    CAS  Google Scholar 

  78. Gahatei MA, Stratton MR, Allen J, et al. Co-expression of calcitonin gene related peptide, gastrin releasing peptide and ACTH by a carcinoid tumor metastasizing to the cerebellum. Post Grad Med J 63:125–130, 1987.

    Google Scholar 

  79. Pansky A, DeWeerth A, Fasler-Kan E, et al. Gastrin releasing peptide-preferring bombesin receptors mediate growth of human renal cell carcinoma. J Am Soc Nephol 11:1409–1418, 2000.

    CAS  Google Scholar 

  80. Bartholdi MF, Wu JM, Pu H, et al. In situ hybridization for gastrin releasing peptide receptor (GRP receptor) expression in prostatic carcinoma. Int J Cancer 79:82–90, 1998.

    PubMed  CAS  Google Scholar 

  81. Cuttita F, Desmond NC, Mulshine J, et al. Bombesin like peptides can function as autocrine growth factors in human small cell lung cancer. Nature 316:823–826, 1985.

    Google Scholar 

  82. Saurin JC, Fallavier M, Sordat B, et al. Bombesin stimulates invasion and migration of Isrecol colon carcinoma cells in a rhodependent manner. Cancer 62:4829–4835, 2002.

    CAS  Google Scholar 

  83. Saurin JC, Nemoz-Gaillard E, Sordat B, et al. Bombesin stimulates adhesion, spreading, lamellipodia formation and proliferation in a human colon carcinoma Isrecol cell line. Cancer Res 316:962–967, 1999.

    Google Scholar 

  84. Mendelsohn G, Eggleston JC, Olson JL, et al. Vasoactive intestinal peptide and its relationship to ganglion cell differentiation in neuroblastic tumors. Lab Invest 41:144–149, 1979.

    PubMed  CAS  Google Scholar 

  85. Said SI, Faloona GR. Elevated plasma and tissue levels of vasoactive intestinal polypeptide in the watery diarrhea syndrome due to pancreatic bronchogenic and other tumors. N Engl J Med 293:155–160, 1975.

    PubMed  CAS  Google Scholar 

  86. Moody TW, Chan D, Fahrenkrug J, Jensen RT. Neuropeptides as autocrine growth factors in cancer cells. Curr Pharm Des 9:495–509, 2003.

    PubMed  CAS  Google Scholar 

  87. Wood SM, Wood, JR, Ghatei MA, et al. Bombesin, somatostatin, and neurotensin-like immunoreactivity in bronchial carcinoma. J Clin Endocrinol Metab 53:1310–1312, 1981.

    PubMed  CAS  Google Scholar 

  88. Huntstein W, Trumper LH, Dummer R, et al. Glucagonoma syndrome and bronchial carcinoma. Ann Int Med 109:920–921, 1988.

    Google Scholar 

  89. Leach SD, La Morte AI, Ture LD, et al. Aberrant hormone production from ovarian neoplasms: strategies for diagnosis and therapy. World J Surg 14:335–340, 1990.

    PubMed  CAS  Google Scholar 

  90. Baylin SB, Herman JG, Graff JR, et al. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196, 1998.

    PubMed  CAS  Google Scholar 

  91. Ito T, Udaka N, Okudela K, et al. Mechanisms of neuroendocrine differentiation in pulmonary neuroendocrine cells and small cell carcinomas. Endocrine Pathol 14:133–139, 2003.

    CAS  Google Scholar 

  92. Borges M, Linnoila RI, van de Velde H, et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386:852–855, 1997.

    PubMed  CAS  Google Scholar 

  93. Chen H, Thiagalingam A, Chopra H, et al. Conservation of the Drosophila lateral inhibition pathway in human lung cancer: A hairy related protein (HES-1) directly represses achete-scute homolog-1 expression. Proc Natl Acad Sci USA 94:5355–5360, 1997.

    PubMed  CAS  Google Scholar 

  94. Linnoila RI, Zaho B, DeMayo JL, et al. Constitutive achete-scute homologue-1 promotes airway dysplasia and lung neuroendocrine tumors in transgenic mice. Cancer Res 60:4005–4009, 2000.

    PubMed  CAS  Google Scholar 

  95. Watkins D, Berman D, Burkholder S, et al. Hedgohog signaling within airway epithelial progenitors and in small cell lung cancer. Nature 422:313–317, 2003.

    PubMed  CAS  Google Scholar 

  96. Watkins D, Berman D, Baylin SB. Hedgehog signaling: progenitor phenotype in small cell lung cancer. Cell Cycle 2:196–198, 2003.

    PubMed  CAS  Google Scholar 

  97. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413, 2002.

    PubMed  CAS  Google Scholar 

  98. Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21:5427–5440, 2002.

    PubMed  CAS  Google Scholar 

  99. Karp A, Jones D. Reactivating the expression of methylation silenced genes in human cancer. Oncogene 21:5496–5503, 2002.

    Google Scholar 

  100. Newell-Price J, King P, Clark A. The CpG island promoter of the human proopiomelanocortin gene is methylated in nonexpressing normal tissue and tumors and represses expression. Mol Endocrinol 15:338–348, 2001.

    PubMed  CAS  Google Scholar 

  101. Newell-Price J. Proopiomelanocortin gene expression and DNA methylation: implications for Cushing’s syndrome and beyond. J. Endocrinol 177:365–372, 2003.

    PubMed  CAS  Google Scholar 

  102. Rabbani SA. Molecular mechanism action of parathyroid hormone related peptide in hypercalcemia of malignancy: therapeutic strategies (review). Int J Oncol 16:198–206, 2001.

    Google Scholar 

  103. Akliliu F, Gladu J, Goltzman D, Rabbani SA. Role of mitogen activated protein kinase in the induction of parathyroid hormone related peptide. Cancer Res 60:1753–1760, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald A. DeLellis MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeLellis, R.A., Xia, L. Paraneoplastic endocrine syndromes: A review. Endocr Pathol 14, 303–317 (2003). https://doi.org/10.1385/EP:14:4:303

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/EP:14:4:303

Key Words

Navigation