Skip to main content
Log in

Effect of dopamine agonists on lactotroph adenomas of the human pituitary

  • Clinical Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Dopamine (DA) agonists cause reduction of blood prolactin level and tumor shrinkage in most patients with lactotroph adenoma. Our aim was to investigate the cellular mechanism of tumor shrinkage by determining mitotic, MIB-1, p27, and apoptotic indices, as well as microvessel density (MVD), surface microvessel density (SMD), ploidy, and other nuclear parameters. Surgically removed lactotroph adenomas were selected from 29 patients, of whom 19 were treated with oral bromocriptine (BEC), long-acting injectable BEC (BEC-LAR), or quinagolide and 10 were untreated. In treated adenomas mitotic and MIB-1 indices were lower, whereas the apoptotic indices were not significantly higher compared to untreated adenomas. The decrease in MIB-1 labeling reached significance in adenomas exposed to quinagolide (p<0.05). Aside from the BEC-LAR treated group, wherein p27 expression was significantly reduced (p<0.05), p27 expression did not differ significantly between the treated and untreated groups. MVD density was significantly lower in the treated adenomas, whereas the decrease in SMD did not attain significance. The DNA ploidy and most other nuclear parameters did not differ significantly in the two groups. In conclusion, reduction of mitotic and MIB-1 indices indicates that suppression of cell proliferation contributes to tumor shrinkage, whereas p27 protein expression and apoptosis play no major role in the adenoma involution. Further studies are required to explain the effect of DA agonists on MVD and SMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bevan JS, Webster J, Burke CW, Scanlon MF. Dopamine agonists and pituitary tumor shrinkage. Endocr Rev 13:220–240, 1992.

    Article  PubMed  CAS  Google Scholar 

  2. Ciccarelli E, Miola C, Grottoli S, Avataneo T, Lancranjan I, Camanni F. Long term therapy of patients with macroprolactinoma using repeatable injectable bromocriptine. J Clin Endocrinol Metab 76:484–488, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Tabarin A, Catargi B. Treatment of macroprolactinomas with quinagolide (Norprolac). Annu d’Endocrinol 58:87–94, 1997.

    CAS  Google Scholar 

  4. Lloyd HM, Meares JD, Jacobi J. Effects of oestrogen and bromocriptine on in vivo secretion and mitosis in prolactin cells. Nature 255:497–498, 1975.

    Article  PubMed  CAS  Google Scholar 

  5. Tindall GT, Kovacs K, Horvath E, Thorner MO. Human prolactin-producing adenomas and bromocriptine: a histological, immunocytochemical, ultrastructural and morphometric study. J Clin Endocrinol Metab 55:1178–1183, 1982.

    PubMed  CAS  Google Scholar 

  6. Wood DF, Johnston JM, Johnston DG. Dopamine, the dopamine D2 receptor and pituitary tumours. Clin Endocrinol 35:455–466, 1991.

    CAS  Google Scholar 

  7. Brown DC, Gatter KC. Monoclonal antibody Ki-67: its use in histopathology. Histopathology 17:489–503, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:1710–1715, 1984.

    PubMed  CAS  Google Scholar 

  9. Ekramullah SM, Saitoh Y, Arita N, Ohnishi T, Hayakawa T. The correlation of Ki-67 staining indices with tumour doubling times in regrowing non-functioning pituitary adenomas. Acta Neurochir (Wein) 138:1449–1455, 1996.

    Article  CAS  Google Scholar 

  10. Losa M, Franzin A, Mortini P, Terreni MR, Mangili F, Giovanelli M. Usefulness of markers of cell proliferation in the management of pituitary adenomas. Clin Sci 95:29–135, 1998.

    Google Scholar 

  11. Sallinen PK, Haapasalo HK, Visakoripi T, Helen PT, Rantala IS, Isola JJ, Helin HJ. Prognostification of astrocytoma patient survival by Ki-67 (MIB-1), PCNA, and S phase fraction using archival paraffin-embedded samples. J Pathol 174:275–282, 1994.

    Article  PubMed  CAS  Google Scholar 

  12. Thapar K, Kovacs K, Scheithauer BW, Stefaneanu L, Horvath E, Pernicone PJ, Murray D, Laws ER. Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery 38:99–106, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Thor AD, Liu S, Moore DH, Edgerton SM. Comparison of mitotic index, in vitro bromodeoxyuridine labeling, and MIB-1 assays to quantitate proliferation in breast cancer. J Clin Oncol 17:470–471, 1999.

    PubMed  CAS  Google Scholar 

  14. Sherr CJ. Cancer cell cycles. Science 274:1672–1677, 1996.

    Article  PubMed  CAS  Google Scholar 

  15. Kiyokawa H, Kineman RD, Manova-Todorova KO, et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27kip1. Cell 85:721–732, 1996.

    Article  PubMed  CAS  Google Scholar 

  16. Fero ML, Rivkin M, Tasch M, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27kip1-deficient mice. Cell 85:733–744, 1996.

    Article  PubMed  CAS  Google Scholar 

  17. Nakayama K, Ishida N, Shirane M, et al. Mice lacking p27kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85:707–720, 1996.

    Article  PubMed  CAS  Google Scholar 

  18. Lloyd RV, Erickson LA, Jin L, et al. P27kip1: A multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 154:313–323, 1999.

    PubMed  CAS  Google Scholar 

  19. Newcomb EW, Sosnow M, Demopoulos RI, Zeleniuch-Jacquotte A, Sorich J, Speyer JL. Expression of the cell cycle inhibitor p27kip1 is a new prognostic marker associated with survival in epithelial ovarian tumors. Am J Pathol 154:119–125, 1999.

    PubMed  CAS  Google Scholar 

  20. Saegusa M, Nitta H, Hashimura M, Okayasu I. Down-regulation of p27kip1 expression is correlated with increased cell proliferation but not expression of p21 waf1 and p53 and human papillomavirus infection in benign and malignant tumours of sinonasal regions. Histopathology 35:55–64, 1999.

    Article  PubMed  CAS  Google Scholar 

  21. Erickson LA, Jin L, Wollen P, Thompson GB, van Heerden JA, Lloyd RV. Parathyroid hyperplasia, adenomas, and carcinomas differential expression of p27kip1 protein. Am J Surg Pathol 23:288–295, 1999.

    Article  PubMed  CAS  Google Scholar 

  22. Nakzumi H, Sasano H, Iino K, Ohashi Y, Orikasa S. Expression of cell cycle inhibitor p27 and Ki-67 in human adrenocortical neoplasms. Mod Pathol 11:1165–1170, 1998.

    Google Scholar 

  23. Reed JC, Miyashita T, Takayama S, et al. BCL-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J Cell Biochem 60:23–32, 1996.

    Article  PubMed  CAS  Google Scholar 

  24. Kontogeorgos G, Sambaziotis D, Piaditis G, Karameris A. Apoptosis in human pituitary adenomas: a morphological and in-situ end-labeling study. Mod Pathol 10:921–926, 1997.

    PubMed  CAS  Google Scholar 

  25. Kulig E, Jin L, Xiang Q, et al. Apoptosis in nontumorous and neoplastic human pituitaries. Expression of the BCL-2 family of proteins. Am J Pathol 154:767–774, 1999.

    PubMed  CAS  Google Scholar 

  26. Green VL, White MC, Hipkin LJ, Jeffreys RV, Foy PM, Atkin SL. Apoptosis and p53 suppressor gene protein expression in human anterior pituitary adenomas. Eur J Endocrinol 136:382–387, 1997.

    PubMed  CAS  Google Scholar 

  27. Folkman J, What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6, 1990.

    Article  PubMed  CAS  Google Scholar 

  28. Monschke F, Muller WU, Winkler U, Steffer C. Cell proliferation and vascularization in human breast carcinomas. Int J Cancer 49:812–815, 1991.

    Article  PubMed  CAS  Google Scholar 

  29. Weidner N. Tumor angiogenesis: review of current applications in tumor prognostication. Semin Diagn Pathol 10:302–313, 1993.

    PubMed  CAS  Google Scholar 

  30. Barnhill RL, Fandrey K, Levy MA, Mihm MC, Hyman B. Angiogenesis and tumor progression of melanoma. Quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma. Lab Invest 67:331–337, 1992.

    PubMed  CAS  Google Scholar 

  31. Dinh TV, Hannigan EV, Smith ER, Hove MJ, Chopra V, To T. Tumor angiogenesis as a predictor of recurrence in stage lb squamous cell carcinoma of the cervix. Obst Gynecol 87:751–754, 1996.

    Article  CAS  Google Scholar 

  32. Jugenburg M, Kovacs K, Jugenburg I, Scheithauer BW. Angiogenesis in endocrine neoplasms. Endocr Pathol 8:259–272, 1997.

    PubMed  Google Scholar 

  33. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JA. Angiogenesis in pituitary adenomas and the normal pituitary gland. J Clin Endocrinol Metab 85:1159–1162, 2000.

    Article  PubMed  CAS  Google Scholar 

  34. Jakubowski J. Blood Supply, blood flow and autoregulation in the adenohypophysis, and altered patterns in oestrogen-induced adenomatous hyperplasia. Br J Neurosurg 9:331–345, 1995.

    Article  PubMed  CAS  Google Scholar 

  35. Pressman N J. Markovian analysis of cervical cell images. J Histochem Cytochem 24:138–144, 1976.

    PubMed  CAS  Google Scholar 

  36. Rengachary SS, Tomita T, Jefferies B, Watanabe I. Structural changes in human pituitary tumor after bromocriptine therapy. Neurosurgery 10:242–251, 1982.

    Article  PubMed  CAS  Google Scholar 

  37. Gen M, Uozumi T, Ohta M, Ito A, Kajiwara H, Mori S. Necrotic changes in prolactinomas after long term administration of bromocriptine. J Clin Endocrinol Metab 59:463–479, 1983.

    Article  Google Scholar 

  38. Ekramullah SM, Saitoh Y, Ohnishi T, Arita N, Taki T, Hayakawa T. Effects of bromocriptine on staining indices of Ki-67 and proliferating cell nuclear antigen and nucleolar organizer region number in pituitary adenomas. Neurol Med Chir 35:221–226, 1940.

    Article  Google Scholar 

  39. Burger PC, Shibata T, Kleihues P. Proliferation markers for neoplasms of the nervous system. In: Advances in Immunohistochemistry, DeLellis RA (ed), New York, Raven Press, 1988; 302–316.

    Google Scholar 

  40. Thapar K, Yamada Y, Scheithauer BW, Kovacs K, Yamada S, Stefaneanu L. Assessment of mitotic activity in pituitary adenomas and carcinomas. Endocr Pathol 7:215–221, 1996.

    PubMed  Google Scholar 

  41. Shibuya M, Saito F, Miwa T, Davis RL, Wilson CB, Hoshino T. Histochemical study of pituitary adenomas with Ki-67 and anti-DNA polymerase a monoclonal antibodies, bromo-deoxyuridine labeling, and nucleolar organizer region counts. Acta Neuropathol 84:178–183, 1992.

    Article  PubMed  CAS  Google Scholar 

  42. Stefaneanu L, Kovacs K, Horvath E, et al. In-situ hybridization study of estrogen receptor messenger ribonucleic acid in human adenohypophysial cells and pituitary adenomas. J Clin Endocrinol Metab 78:83–88, 1993.

    Article  Google Scholar 

  43. Lloyd RV, Cano M, Landerfeld TD. The effects of estrogens on tumor growth and on prolactin and growth hormone mRNA expression in rat pituitary tissues. Am J Pathol 133:397–406, 1988.

    PubMed  CAS  Google Scholar 

  44. Waterman ML, Adler S, Nelson C, Greene GL, Evans R, Rosenfeld MG. A single domain of the estrogen receptor confers deoxyribonucleic acid binding and transcriptional activation of the rat prolactin gene. Mol Endocrinol 2:14–21, 1988.

    PubMed  CAS  Google Scholar 

  45. Bamberger CM, Fehn M, Bamberger AM, et al. Reduced expression levels of the cell-cycle inhibitor p27 in human pituitary adenomas. Eur J Endocrinol 140:250–255, 1999.

    Article  PubMed  CAS  Google Scholar 

  46. Jin L, Qian X, Kulig E, et al. Transforming growth factor-β, transforming growth factor-β receptor II, and p27kip1 expression in nontumorous and neoplastic human pituitaries. Am J Pathol 151:509–519, 1997.

    PubMed  CAS  Google Scholar 

  47. Tanaka C, Yoshimoto K, Yang P, et al. Infrequent mutations of p27kip1 gene and trisomy 12 in a subset of human pituitary adenomas. J Clin Endocrinol Metab 82:3141–3147, 1997.

    Article  PubMed  CAS  Google Scholar 

  48. Yin D, Kondo S, Takeuchi J, Morimura T. Induction of apoptosis in murine ACTH-secreting pituitary adenoma cells by bromocriptine. FEBS Lett 339:73–75, 1994.

    Article  PubMed  CAS  Google Scholar 

  49. Drewett N, Jacobi JM, Willgoss DA, Lloyd HM. Apoptosis in the anterior pituitary gland of the rat: studies with estrogen and bromocriptine. Neuroendocrinology 57:89–95, 1993.

    PubMed  CAS  Google Scholar 

  50. Weidner N, Semple JP, Welch WR, Folkman JF. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 324:1–8, 1991.

    Article  PubMed  CAS  Google Scholar 

  51. Bostwick DG, Wheeler TM, Blute M, et al. Optimized microvessel density analysis improves prediction of cancer stage from prostate needle biopsies. Urology 48:47–57, 1996.

    Article  PubMed  CAS  Google Scholar 

  52. Bodmer CW, Atkin SL, Savage MW, Masson EA, White MC. Effects of quinagolide (CV205-502), a selective D2-agonist, on vascular reactivity in patients with prolactin-secreting adenoma. Clin Endocrinol 43:49–53, 1995.

    CAS  Google Scholar 

  53. Kemeny AA, Jakubowski JA, Pasztor Z, Jefferson AA, Wojcikiewicz R. Reduction of blood flow in the adenohypophysis of rats by bromocriptine. J Neurosurg 63:120–124, 1985.

    Article  PubMed  CAS  Google Scholar 

  54. Kemeny AA, Jakubowski J, Stawowy A, Smith C, Timperley WR. Changes of blood flow in oestrogen induce hyperplastic anterior lobe following bromocriptine administration. Br J Neurosurg 1:243–250, 1987.

    PubMed  CAS  Google Scholar 

  55. Kobayashi Y, Amenta F, Ricci A, Hattori K. Localisation of dopamine D1-like and D2-like receptors in the pulmonary vasculature. Hypertension Res 1:S153–156, 1995.

    Google Scholar 

  56. Kobayashi Y, Cavallotti D, Ricci A, Amenta F. Localisation of dopamine D2-like receptors in pulmonary artery of the human and rabbit but not of the rat. Eur J Pharmacol 261:229–236, 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Stefaneanu PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefaneanu, L., Kovacs, K., Scheithauer, B.W. et al. Effect of dopamine agonists on lactotroph adenomas of the human pituitary. Endocr Pathol 11, 341–352 (2000). https://doi.org/10.1385/EP:11:4:341

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/EP:11:4:341

Key Words

Navigation