Skip to main content
Log in

Evaluation of endocrine neoplasms using fine needle aspiration biopsy

  • Clinical Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Fine needle aspiration biopsy (FNAB) has established itself as a safe and reliable diagnostic modality that is now routinely employed in the evaluation of endocrine tumors. Although FNAB provides specific diagnoses in the majority of cases, certain processes may not be readily distinguished by cytomorphology alone. Akin to the contributions of immunochemistry to diagnostic pathology, molecular diagnostics is now becoming an integral part of patient management. Molecular pathology may provide information regarding the diagnosis, prognosis, and therapy of numerous lesions. It is anticipated that further research and improvements in technology will result in the development of sensitive and specific tests that will enhance the management of the endocrine patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frable WJ. Needle aspiration biopsy: past, present, and future. Hum Pathol 20(6):504–517, 1989.

    Article  PubMed  CAS  Google Scholar 

  2. Frable WJ. Fine-needle aspiration biopsy: a review. Hum Pathol 14(1):9–28, 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Frable MA, Frable WJ. Fine-needle aspiration biopsy revisited. Laryngoscope 92:1414–1418, 1982.

    Article  PubMed  CAS  Google Scholar 

  4. Zakowski MF. Fine-needle aspiration cytology of tumors: diagnostic accuracy and potential pitfalls. Cancer Investigation 12(5):505–515, 1994.

    PubMed  CAS  Google Scholar 

  5. Danese D, Centanni M, Farsetti A, Andreoli M. Diagnosis of thyroid carcinoma. J Exp Clin Cancer Res 16(3):337–347, 1997.

    PubMed  CAS  Google Scholar 

  6. Silverman JF, West RL, Larkin EW, et al. The role of fine-needle aspiration biopsy in the rapid diagnosis and management of thyroid neoplasm. Cancer 57(6):1164–1170, 1986.

    Article  PubMed  CAS  Google Scholar 

  7. Holleman F, Hoekstra JB, Ruitenberg HM. Evaluation of fine needle aspiration (FNA) cytology in the diagnosis of thyroid nodules. Cytopath 6(3):168–175, 1995.

    Article  CAS  Google Scholar 

  8. Agrawal S. Diagnostic accuracy and role of fine needle aspiration cytology in management of thyroid nodules. J Surg Oncol 58(3):168–172, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Piromalli D, Martelli G, Del Prato I, et al. The role of fine needle aspiration in the diagnosis of thyroid nodules: analysis of 795 consecutive cases. J Surg Oncol 50(4):247–250, 1992.

    Article  PubMed  CAS  Google Scholar 

  10. Gharib H. Fine-needle aspiration biopsy of thyroid nodule: advantages, limitations, and effect. Mayo Clin Proc 69(1):44–49, 1994.

    PubMed  CAS  Google Scholar 

  11. Frable WJ. The treatment of thyroid cancer. The role of fine-needle aspiration cytology. Arch Otolaryngol Head Neck Surg 112(11):1200–1203, 1986.

    PubMed  CAS  Google Scholar 

  12. Wakely PE, Kardos TF, Frable WJ. Application of fine needle aspiration biopsy to pediatrics. Hum Pathol 19(12):1383–1386, 1988.

    Article  PubMed  Google Scholar 

  13. Lugo-Vicente H, Ortiz VN, Irizarry H, et al. Pediatric thyroid nodules: management in the era of fine needle aspiration. J Pediatr Surg 33(8):1302–1305, 1998.

    Article  PubMed  CAS  Google Scholar 

  14. Genetic susceptibility to cancer. Ann ICRP 28(1–2):1–157, 1998.

    Google Scholar 

  15. Powers CN, Silverman JF. Thyroid and parathyroid. In: Geisinger KR and Silverman JF (eds): Fine Needle Aspiration Cytology of Superficial Organs and Body Sites. New York: Churchill Livingstone, 1999; 85–103.

    Google Scholar 

  16. Silverman JF, Geisinger KR. Adrenal gland. In: Fine Needle Aspiration Cytology of the Thorax and Abdomen. New York: Churchill Livingstone, 1996; 197–218.

    Google Scholar 

  17. Euhus DM, Maitra A, Wistuba II, et al. Use of archival fine-needle aspirates for allelotyping of tumors. Cancer (Cancer Cytopathol) 87(6):372–379, 1999.

    CAS  Google Scholar 

  18. Abati A, Sanjuan X, Wilder AM, et al. Utilization of microdissection and the polymerase chain reaction for the diagnosis of adrenal cortical carcinoma in fine-needle aspiration cytology. Cancer (Cancer Cytopathol) 87(4):231–237, 1999.

    CAS  Google Scholar 

  19. Zeiger MA, Smallridge RC, Clark DP, et al. Human telomerase reverse transcriptase (hTERT) gene expression in FNA samples from thyroid neoplasms. Surgery 126(6):1195–1198, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Takano T, Miyauchi A, Yokozawa T, et al. Accurate and objective preoperative diagnosis of thyroid papillary carcinomas by reverse transcription-PCR detection of oncofetal fibronectin messenger RNA in fine-needle aspiration biopsies. Cancer Res 58(21):4913–4917, 1998.

    PubMed  CAS  Google Scholar 

  21. Donghi R, Longoni A, Pilotti S, et al. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest 91(4):1753–1760, 1993.

    PubMed  CAS  Google Scholar 

  22. Pierotti MA, Bongarzone I, Borello MG, et al. Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells. Genes Chromosomes Cancer 16(1):1–14, 1996.

    Article  PubMed  CAS  Google Scholar 

  23. Tung WS, Shevlin DW, Bartsch D, et al. Infrequent CDKN2 mutation in human differentiated thyroid cancers. Mol Carcinog 15(1):5–10, 1996.

    Article  PubMed  CAS  Google Scholar 

  24. Komoike Y, Tamaki Y, Sakita I, et al. Comparative genomic hybridization defines frequent loss on 16p in human anaplastic thyroid carcinoma. Int J Oncol 14(6):1157–1162, 1999.

    PubMed  CAS  Google Scholar 

  25. Trovato M, Fraggetta F, Villari D, et al. Loss of heterozygosity on the long arm of chromosome 7 in follicular and anaplastic thyroid cancer, but not in papillary thyroid cancer. J Clin Endocrinol Metab 84(9):3235–3240, 1999.

    Article  PubMed  CAS  Google Scholar 

  26. Kitamura Y, Shimizu K, Tanaka S, et al. Allelotyping of anaplastic thyroid carcinoma: frequent allelic losses on 1q, 9p, 11, 17, 19p, and 22q. Genes Chromosomes Cancer 27(3):244–251, 2000.

    Article  PubMed  CAS  Google Scholar 

  27. Komminoth P. The RET proto-oncogene in medullary and papillary thyroid carcinoma. Molecular features, pathophysiology and clinical implications. Virchows Arch 431(1):1–9, 1997.

    Article  PubMed  CAS  Google Scholar 

  28. Eng C. RET proto-oncogene in the development of human cancer. J Clin Oncol 17(1):380–393, 1999.

    PubMed  CAS  Google Scholar 

  29. Calender A, Giraud S, Schuffenecker I, et al. Genetic testing in presymptomatic diagnosis of multiple endocrine neoplasia. Horm Res 47(4–6):199–210, 1997.

    PubMed  CAS  Google Scholar 

  30. Wick, MJ. Clinical and molecular aspects of multiple endocrine neoplasia. Clin Lab Med 17(1):39–57, 1997.

    PubMed  CAS  Google Scholar 

  31. Santoro M, Grieco M, Melillo RM, et al. Molecular defects in thyroid carcinomas: role of the RET oncogene in thyroid neoplastic transformation. Eur J Endocrinol 133(5):513–522, 1995.

    PubMed  CAS  Google Scholar 

  32. Shi Y, Zou M, Farid NR, al-Sedairy ST. Evidence of gene deletion of p21 (WAF1/CIP1), a cyclin-dependent protein kinase inhibitor, in thyroid carcinomas. Br J Cancer 74(9):1336–1341, 1996.

    PubMed  CAS  Google Scholar 

  33. Schulte KM, Staudt S, Niederacher D, et al. Rare loss of heterozygosity of the MTS1 and MTS2 tumor suppressor genes in differentiated human thyroid cancer. Horm Metab Res 30(9):549–554, 1998.

    PubMed  CAS  Google Scholar 

  34. Rabes HM, Klugbauer S. Molecular genetics of childhood papillary thyroid carcinomas after irradiation: high prevalence of RET rearrangement. Recent Results Cancer Res 154:248–264, 1998.

    PubMed  CAS  Google Scholar 

  35. Manenti G, Pilotti S, Re FC, et al. Selective activation of ras oncogenes in follicular and undifferentiated thyroid carcinomas. Eur J Cancer 30A(7):987–993, 1994.

    Article  PubMed  CAS  Google Scholar 

  36. Lemoine NR, Mayall ES, Wyllie FS, et al. Activated ras oncogenes in human thyroid cancers. Cancer Res 48(16):4459–4463, 1988.

    PubMed  CAS  Google Scholar 

  37. Zedenius J, Wallin G, Svensson A, et al. Deletions of the long arm of chromosome 10 in progression of follicular thyroid tumors. Hum Genet 97(3):299–303, 1996.

    Article  PubMed  CAS  Google Scholar 

  38. Marsh DJ, Zheng Z, Zedenius J, et al. Differential loss of heterozygosity in the region of the Cowden locus within 10Q22–23 in follicular thyroid adenomas and carcinomas. Cancer Res 57(3):500–503, 1997.

    PubMed  CAS  Google Scholar 

  39. Yeh JJ, Marsh DJ, Zedenius J, et al. Fine-structure deletion mapping of 10q22–24 identifies regions of loss of heterozygosity and suggests that sporadic follicular thyroid adenomas and follicular thyroid carcinomas develop along distinct neoplastic pathways. Genes Chromosomes Cancer 26(4):322–328, 1999.

    Article  PubMed  CAS  Google Scholar 

  40. Halachmi N, Halachmi S, Evron E, et al. Somatic mutations of the PTEN tumor suppressor gene in sporadic follicular thyroid tumors. 23(3):239–243, 1998.

  41. Sapi Z, Lukacs G, Sztan M, et al. Contribution of p53 gene alterations to development of metastatic forms of follicular thyroid carcinoma. Diagn Mol Pathol 4(4):256–260, 1995.

    PubMed  CAS  Google Scholar 

  42. Herrmann MA, Hay ID, Bartelt DH, et al. Cytogenetic and molecular genetic studies of follicular and papillary thyroid cancers. J Clin Invest 88(5):1596–1604, 1991.

    PubMed  CAS  Google Scholar 

  43. Tung WS, Shevlin DW, Kaleem Z, et al. Allelotype of follicular thyroid carcinomas reveals genetic instability consistent with frequent nondisjunctional chromosomal loss. Genes Chromosomes Cancer 19(1):43–51, 1997.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang JS, Nelson M, McIver B, et al. Differential loss of heterozygosity at 7q31.2 in follicular and papillary thyroid tumors. Oncogene 17(6):789–793, 1998.

    Article  PubMed  CAS  Google Scholar 

  45. Matsuo K, Tang SH, Fagin JA. Allelotype of human thyroid tumors: loss of chromosome 11q13 sequences in follicular neoplasms. Mol Endocrinol 5(12):1873–1879, 1991.

    PubMed  CAS  Google Scholar 

  46. Nord B, Larsson C, Wong FK, et al. Sporadic follicular thyroid tumors show loss of a 200-kb region in 11q13 without evidence for mutations in the MEN1 gene. Genes Chromosomes Cancer 26(1):35–39, 1999.

    Article  PubMed  CAS  Google Scholar 

  47. Lazzereschi D, Palmirotta R, Ranieri A, et al. Microsatellite instability in thyroid tumors and tumor-like lesions. Br J Cancer 79(2):340–345, 1999.

    PubMed  CAS  Google Scholar 

  48. Tallini G, Hsuch A, Liu S, et al. Frequent chromosomal DNA unbalance in thyroid oncocytic (Hurthle cell) neoplasms detected by comparative genomic hybridization. Lab Invest 79(5):547–555, 1999.

    PubMed  CAS  Google Scholar 

  49. Zedenius J, Wallin G, Svensson A, et al. Allelotyping of follicular thyroid tumors. Hum Genet 96(1):27–32, 1995.

    Article  PubMed  CAS  Google Scholar 

  50. Segev DL, Saji M, Phillips GS, et al. Polymerase chain reaction-based microsatellite polymorphism analysis of follicular and Hurthle cell neoplasms of the thyroid. J Clin Endocrinol Metab 83(6):2036–2042, 1998.

    Article  PubMed  CAS  Google Scholar 

  51. Haugen BR, Nawaz S, Markham N, et al. Telomerase activity in benign and malignant thyroid tumors. Thyroid 7(3):337–342, 1997.

    Article  PubMed  CAS  Google Scholar 

  52. Aogi K, Kitahara K, Buley I, et al. Telomerase activity in lesions of the thyroid: application to diagnosis of clinical samples including fine-needle aspirates. Clin Cancer Res 4(8):1965–1970, 1998.

    PubMed  CAS  Google Scholar 

  53. Bornstein SR, Stratakis CA, Chrousos GP. Adrenocortical tumors: recent advances in basic concepts and clinical management. Ann Intern Med 130(9):759–771, 1999.

    PubMed  CAS  Google Scholar 

  54. Kjellman M, Roshani L, Teh BT, et al. Genotyping of adrenocortical tumors: very frequent deletions of the MEN1 locus in 11q13 and of a 1-centimorgan region in 2p16. J Clin Endocrinol Metab 84(2):730–735, 1999.

    Article  PubMed  CAS  Google Scholar 

  55. Gortz B, Roth J, Speel EJ, et al. MEN1 gene mutation analysis of sporadic adenocortical lesions. Int J Cancer 80(3):373–379, 1999.

    Article  PubMed  CAS  Google Scholar 

  56. Fogt F, Vargas MP, Zhuang Z, Merino MJ. Utilization of molecular genetics in the differentiation between adrenal cortical adenomas and carcinomas. Hum Pathol 29(5):518–521, 1998.

    Article  PubMed  CAS  Google Scholar 

  57. Pilon C, Pistorello M, Moscon A, et al. Inactivation of the p16 tumor suppressor gene in adrenocortical tumors. J Clin Endocrinol Metab 84(8):2776–2779, 1999.

    Article  PubMed  CAS  Google Scholar 

  58. Gicquel C, Leblond-Francillard M, Bertagna X, et al. Clonal analysis of adrenocortical carcinomas and secreting adenomas. Clin Endocrinol (Oxf) 40(4):465–477, 1994.

    CAS  Google Scholar 

  59. Khosla S, Patel VM, Hay ID, et al. Loss of heterozygosity suggests multiple genetic alterations in pheochromocytomas and medullary thyroid carcinomas. J Clin Invest 87(5):1691–1699, 1991.

    Article  PubMed  CAS  Google Scholar 

  60. Vargas MP, Zhuang Z, Wang C, et al. Loss of heterozygosity on the short arm of chromosomes 1 and 3 in sporadic pheochromocytoma and extra-adrenal paraganglioma. Hum Pathol 28(4):411–415, 1997.

    Article  PubMed  CAS  Google Scholar 

  61. Santoro M, Melillo RM, Carlomagno F, et al. Different mutations in the RET gene cause different human tumoral diseases. Biochimie 81:397–402, 1999.

    Article  PubMed  CAS  Google Scholar 

  62. Herfarth KK, Wick MR, Marshall HN, et al. Absence of TP53 alterations in pheochromocytomas and medullary thyroid carcinomas. Genes Chromosomes Cancer 20(1):24–29, 1997.

    Article  PubMed  CAS  Google Scholar 

  63. Moley JF, Brother MB, Fong CT, et al. Consistent association of 1p loss of heterozygosity with pheochromocytomas from patients with multiple endocrine neoplasia type 2 syndromes. Cancer Res 52(4):770–774, 1992.

    PubMed  CAS  Google Scholar 

  64. Tanaka N, Nishisho I, Yamamoto M, et al. Loss of heterozygosity on the long arm of chromosome 22 in pheochromocytoma. Genes Chromosomes Cancer 5(4):399–403, 1992.

    Article  PubMed  CAS  Google Scholar 

  65. Gutmann DH, Geist RT, Rose K, et al. Loss of neurofibromatosis type I (NF1) gene expression in pheochromocytomas from patients without NF1. Genes Chromosomes Cancer 13(2):104–109, 1995.

    Article  PubMed  CAS  Google Scholar 

  66. Cryns VL, Yi SM, Tahara H, et al. Frequent loss of chromosome arm 1p DNA in parathyroid adenomas. Genes Chromosomes Cancer 13(1):9–17, 1995.

    Article  PubMed  CAS  Google Scholar 

  67. Arnold A, Staunton CE, Kim HG, et al. Monoclonality and abnormal parathyroid hormone genes in parathyroid adenomas. N Eng J Med 18(11):658–662, 1988.

    Article  Google Scholar 

  68. Pearce SH, Trump D, Wooding C, et al. Loss of heterozygosity studies at the retinoblastoma and breast cancer susceptibility (BRCA2) loci in pituitary, parathyroid, pancreatic, and carcinoid tumors. Clin Endocrinol (Oxf) 45(2):195–200, 1996.

    Article  CAS  Google Scholar 

  69. Tahara H, Smith AP, Gaz RD, Arnold A. Loss of chromosome arm 9p DNA and analysis of the p16 and p15 cyclin-dependent kinase inhibitor genes in human parathyroid adenomas. J Clin Endocrinol Metab 81(10):3663–3667, 1996.

    Article  PubMed  CAS  Google Scholar 

  70. Farnebo F, Teh BT, Kytola S, et al. Alterations of the MEN1 gene in sporadic parathyroid tumors. J Clin Endocrinol Metab 83(8):2627–2630, 1998.

    Article  PubMed  CAS  Google Scholar 

  71. DeLellis RA. The hereditary forms of pancreatic neuroendocrine tumors. Adv Anat Pathol 6(3):149–153, 1999.

    Article  PubMed  CAS  Google Scholar 

  72. Wang EH, Ebrahimi SA, Wu AY, et al. Mutation of the MENIN gene in sporadic pancreatic endocrine tumors. Cancer Res 58(19):4417–4420, 1998.

    PubMed  CAS  Google Scholar 

  73. Perren A, Roth J, Muletta-Feurer S, et al. Clonal analysis of sporadic pancreatic endocrine tumors. J Pathol 186(4):363–371, 1998.

    Article  PubMed  CAS  Google Scholar 

  74. Bartsch D, Hahn SA, Danichevski KD, et al. Mutations of the DPC4/Smad4 gene in neuroendocrine pancreatic tumors. Oncogene 18(14):2367–2371, 1999.

    Article  PubMed  CAS  Google Scholar 

  75. Beghelli S, Pelosi G, Zamboni G, et al. Pancreatic endocrine tumours: evidence for a tumour suppressor pathogenesis and for a tumour suppressor gene on chromosome 17P. J Pathol 186(1):41–50, 1998.

    Article  PubMed  CAS  Google Scholar 

  76. Muscarella P, Melvin WS, Fisher WE, et al. Genetic alterations in gastrinomas and nonfunctioning pancreatic neuroendocrine tumors: an analysis of p16/MTS1 tumor suppressor gene inactivation. Cancer Res 58(2):237–240, 1998.

    PubMed  CAS  Google Scholar 

  77. Pavelic K, Hrascan R, Kapitanovic S, et al. Molecular genetics of malignant insulinoma. Anticancer Res 16(4A):1707–1717, 1996.

    PubMed  CAS  Google Scholar 

  78. Jakobovitz O, Nass D, DeMarco L, et al. Carcinoid tumors frequently display genetic abnormalities involving chromosome 11. J Clin Endocrinol Metab 81(9):3164–3167, 1996.

    Article  PubMed  CAS  Google Scholar 

  79. Hiyama E, Hiyama K, Ohtsu K, et al. Telomerase activity in neuroblastoma: is it a prognostic indicator of clinical behavior? Eur J Cancer 33(12):1932–1936, 1997.

    Article  PubMed  CAS  Google Scholar 

  80. Gallego S, Parareda A, Munell F, et al. Clinical relevance of molecular markers in neuroblastoma: results from a single institution. Oncol Rep 6(4):891–896, 1999.

    PubMed  CAS  Google Scholar 

  81. Brinkschmidt C, Poremba C, Christiansen H, et al. Comparative genomic hybridization and telomerase activity analysis identify two biologically different groups of 4s neuroblastomas. Br J Cancer 77(12):2223–2229, 1998.

    PubMed  CAS  Google Scholar 

  82. Lee DJ, Koch WM, Yoo G, et al. Impact of chromosome 14q loss on survival in primary head and neck squamous cell carcinoma. Clin Cancer Res 3(4):501–505, 1997.

    PubMed  CAS  Google Scholar 

  83. Blons H, Cabelguenne A, Carnot F, et al. Microsatellite analysis and response to chemotherapy in head-and-neck squamous-cell carcinoma. Int J Cancer 84(4):410–415, 1999.

    Article  PubMed  CAS  Google Scholar 

  84. Shivers SC, Wang X, Li W, et al. Molecular staging of malignant melanoma: correlation with clinical outcome. JAMA 280(16):1410–1415, 1998.

    Article  PubMed  CAS  Google Scholar 

  85. Bostick PJ, Morton DL, Turner RR, et al. Prognostic significance of occult metastases detected by sentinel lymphadenectomy and reverse transcriptase-polymerase chain reaction in early-stage melanoma patients. J Clin Oncol 17(10):3238–3244, 1999.

    PubMed  CAS  Google Scholar 

  86. Luketich JD, Kassis ES, Shriver SP, et al. Detection of micrometases in histologically negative lymph nodes in esophageal cancer. Ann Thorac Surg 66(5):1715–1718, 1998.

    Article  PubMed  CAS  Google Scholar 

  87. Liefers GJ, Cleton-Jansen AM, van de Velde CJ, et al. Micrometastases and survival in stage II colorectal cancer. N Engl J Med 339(4):223–228, 1998.

    Article  PubMed  CAS  Google Scholar 

  88. Kouraklis G. Progress in cancer gene therapy. Acta Oncol 38(6):675–683, 1999.

    Article  PubMed  CAS  Google Scholar 

  89. Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous trastuzumab (herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer. Semin Oncol 26(4 Suppl 12):78–83, 1999.

    PubMed  CAS  Google Scholar 

  90. Shak S. Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Herceptin Multinational Investigator Study Group. Semin Oncol 26(4 Suppl 12):71–77, 1999.

    PubMed  CAS  Google Scholar 

  91. Sliwkowski MX, Lofgren JA, Lewis GD, et al. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 26(4 Suppl 12):60–70, 1999.

    PubMed  CAS  Google Scholar 

  92. Pegram MD, Slamon DJ. Combination therapy with trastuzumab (Herceptin) and cisplatin for chemoresistant metastatic breast cancer: evidence for receptor-enhanced chemosensitivity. Semin Oncol 26(4 Suppl 12):89–95, 1999.

    PubMed  CAS  Google Scholar 

  93. Goldenberg MM. Trastuzumab, a recombinant DNA-derived humanized-monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 21(2):309–318, 1999.

    Article  PubMed  CAS  Google Scholar 

  94. Roh H, Hirose CB, Boswell CB, et al. Synergistic antitumor effects of HER2/neu antisense oligodeoxynucleotides and conventional chemotherapeutic agents. Surgery 126(2):413–421, 1999.

    PubMed  CAS  Google Scholar 

  95. Sakurada A, Hamada H, Fukushige S, et al. Adenovirus-mediated delivery of PTEN gene inhibits cell growth by induction of apoptosis in endometrial cancer. Int J Oncol 15(6):1069–1074, 1999.

    PubMed  CAS  Google Scholar 

  96. Rocco JW, Li D, Liggett WH Jr, et al. p16INK4A adenovirus-mediated gene therapy for human head and neck squamous cell cancer. Clin Cancer Res 4(7):1697–1704, 1998.

    PubMed  CAS  Google Scholar 

  97. Swisher SG, Roth JA, Nemunaitis J, et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst 91(9):763–771, 1999.

    Article  PubMed  CAS  Google Scholar 

  98. Clayman GL, Frank DK, Bruso PA, Goepfert H. Adenovirus-mediated wild-type p53 gene transfer as a surgical adjuvant in advanced head and neck cancers. Clin Cancer Res 5(7):1715–1722, 1999.

    PubMed  CAS  Google Scholar 

  99. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286(5439):487–491, 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celeste N. Powers MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcus, M.E., Powers, C.N. Evaluation of endocrine neoplasms using fine needle aspiration biopsy. Endocr Pathol 11, 301–313 (2000). https://doi.org/10.1385/EP:11:4:301

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/EP:11:4:301

Key Words

Navigation