Skip to main content
Log in

The art and applications of fluorescence in situ hybridization in endocrine pathology

  • Review
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Fluorescence in situ hybridization (FISH) or molecular cytogenetics is currently recognized as a reliable, sensitive, and reproducible technique for identifying the copy number and structure of chromosomes. FISH combines molecular genetics with classic cytogenetics and allows simultaneous morphologic evaluation on a single slide. Centromeric DNA probes are used to detect specific chromosomes and telomeric probes to demonstrate all chromosomes. Sequence-specific probes can localize in situ a single gene copy on a specific chromosome locus. FISH allows cytogenetic investigation of metaphase spreads and interphase nuclei. Several protocols have been proposed to analyze preparations from fresh samples or archival material. Comparative genomic hybridization (CGH) is a novel cytogenetic technique, which combines FISH with automatic digital image analysis. Comparative analysis of the hybridization products of tumor DNA and reference DNA with normal metaphase chromosomes, each labeled with color different fluorochrome, can retrieve chromosomal imbalances of the entire genome in a single experiment. FISH and CGH are powerful morphologic tools in understanding physiologic mechanisms and in resolving problems of the pathogenesis of several diseases. These techniques shed light on the cytogenetic background in many endocrinological disorders, providing a better understanding of the activities and alterations of endocrine cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC. Delineation of individual human chromosomes in metaphase and interphase cells in situ suppression hybridization using recombinant DNA libraries. Hum Genetics 8:235–246, 1988.

    Google Scholar 

  2. Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci USA 85:9138–9142, 1988.

    Article  PubMed  CAS  Google Scholar 

  3. Cowan JM. Fishing for chromosomes: the art and its applications. Diagn Mol Pathol 3:224–226, 1994.

    PubMed  CAS  Google Scholar 

  4. Wolman SR. Applications of fluorescence in situ hybridization techniques in cytopathology. Cancer 81:193–197, 1997.

    Article  PubMed  CAS  Google Scholar 

  5. Kiechle-Schwarz M, Decker HJ, Berger CS, Fiebig HH, Sandberg AA. Detection of monosomy in interphase nuclei and identification of marker chromosomes using biotinylated alpha-satellite DNA probes. Cancer Cell Genetics Cytogenetics 51:23–33, 1991.

    Article  CAS  Google Scholar 

  6. Kontogeorgos G, Kovacs K. FISHing chromosomes in endocrinology. Endocrine 5:235–240, 1997.

    Google Scholar 

  7. Aubele M, Mattis A, Zitzelsberger H, Walch A, Kremer M, Hutzler P, Hofler H, Werner M. Intratumoral heterogeneity in breast carcinoma revealed by laser—microdissection and comparative genomic hybridization. Cancer Genetics Cytogenetics 110:94–102, 1999.

    Article  CAS  Google Scholar 

  8. Kontogeorgos G, Kapranos N, Kokka E, Orphanidis G, Rologis D. Molecular cytogenetics of chromosome 11 in pituitary adenomas: a comparison of fluorescence in situ hybridization and DNA ploidy study. Hum Pathol, 30:1377–1382, 1999.

    Article  PubMed  CAS  Google Scholar 

  9. Kapranos N, Kontogeorgos G, Frangia K, Kokka E. Effect of fixation on interphase cytogenetic analysis by direct fluorescence in situ hybridization on cell imprints. Biotechnol Histochem 72:148–151, 1997.

    CAS  Google Scholar 

  10. Müller, HJ. The remaking chromosomes: the collecting net. Woods Hole 13:181–198, 1938.

    Google Scholar 

  11. Kontogeorgos G, Kovacs K. Telomeres and telomerase activity in endocrine pathology. Endocrine 9:133–138, 1998.

    Article  PubMed  CAS  Google Scholar 

  12. Meyne J, Moyzis RK. In situ hybridization protocols. In: Chaoo KHA, ed. Methods in molecular biology, vol. 33. Totowa, NJ: Humana Press, 1994; pp 63–74.

    Google Scholar 

  13. Acar H, Stewart J, Connor MJ. Philadelphia chromosome in chronic myelogenous leukemia: confirmation of cytogenetic diagnosis in Ph positive and negative cases by fluorescence in situ hybridization. Cancer Genetics Cytogenetics 94:75–78, 1997.

    Article  CAS  Google Scholar 

  14. Garcia-Isidoro M, Tabernero MD, Garcia JL, Najera ML, Hernadez JM, Wiegant J, Raap A, San-Miguel J, Orfao A. Detection of the Mbcr/abl translocation by fluorescence in situ hybridization: comparison with conventional cytogenetics and implications for minimal residual disease detection. Hum Pathol 28:154–159, 1997.

    Article  PubMed  CAS  Google Scholar 

  15. Roberts I, Wienberg J, Nacheva E, Grace C, Griffin D, Coleman N. Novel method for the production of multiple color chromosome paints for use in karyotyping by fluorescence in situ hybridisation. Genes Chromosomes Cancer 25:241–250, 1999.

    Article  PubMed  CAS  Google Scholar 

  16. Tanke HJ, Wiegant J, van Gijlswijk RP, Bezrookove V, Pattenier H, Heetebrij RJ, Talman EG, Raap AK, Vrolijk J. New strategy for multi-colour fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling. Eur J Hum Genetics 7:2–11, 1999.

    Article  CAS  Google Scholar 

  17. Tuong K, Guilly MN, Gerbault-Sereau M, Malfoy B, Viehl P, Bourgeois CA, Dutrillaux B. Quantitative FISH by image cytometry for the detection of chromosome 1 imbalances in breast cancer: a novel approach analyzing chromosome rearrangements within interphase nuclei. Lab Invest 78:1607–1613, 1998.

    Google Scholar 

  18. Poon SS, Martens UM, Ward RK, Lansdorp PM. Telomere length measurements using digital fluorescence microscopy. Cytometry 36:267–278, 1999.

    Article  PubMed  CAS  Google Scholar 

  19. Velagaleti GV, Tharapel SA, Tharapel AT. Validation of primed in situ labeling (PRINS) for interphase analysis: comparative studies with conventional fluorescence in situ hybridization and chromosome analyses. Cancer Genetics Cytogenetics 108:100–106, 1999.

    Article  CAS  Google Scholar 

  20. Coullin P, Philippe C, Ravise N, Bernheim A. Simultaneous fluorescence in-situ hybridization (FISH) an R-banding by primed insitu labelling (PRINS). Chromosome Res 7:241, 242, 1999.

    Article  PubMed  CAS  Google Scholar 

  21. Sullivan BA, Leana-Cox J, Schwartz S. Clarification of subtle reciprocal rearrangements using fluorescence in situ hybridization. Am J Med Genetics 47:223–230, 1993.

    Article  CAS  Google Scholar 

  22. Kallioniemi A, Kallioniemi O, Sudar D, Rutovitz D, Gray J, Waldeman F, Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821, 1990.

    Article  Google Scholar 

  23. Kjellman M, Kallioniemi O-P, Karhu R, Höög A, Farnebo L-O, Auer G, Larsson C, Bäckdahl M. Genetic alterations in adrenocortical tumors detected using comparative genomic hybridization correlate with tumor size and malignancy. Cancer Res 56:419–423, 1996.

    Google Scholar 

  24. Klein CA, Schmidt-Kittler O, Schardt JA, Pantel K, Speicher MR, Riethmuller G. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci USA 96:4494–4499, 1999.

    Article  PubMed  CAS  Google Scholar 

  25. Kallioniemi O, Kallioniemi A, Piper J, Isola J, Waldman F, Gray JW, Pinkel D. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number of changes in solid tumors. Genes Chromosomes Cancer 10:231–243, 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Palanisamy N, Imanishi Y, Rao OH, Tahara H, Ghaganti RSK, Arnold A. Novel chromosomal abnormalities identified by comparative genomic hybridization in parathyroid adenomas. J Clin Endocrinol Metab 83:1766–1779, 1998.

    Article  PubMed  CAS  Google Scholar 

  27. Inagaki C, Dousseau M, Pacher N, Sarfati E, Drueke TB, Gogusev J. Structural analysis of gene marker loci on chromosomes 10 and 11 in primary and secondary uraemic hyperparathyroidism. Nephrol Dial Transplant 13:350–357, 1998.

    PubMed  CAS  Google Scholar 

  28. Kontogeorgos G, Kapranos N. Interphase analysis of chromosome 11 in human pituitary somatotroph adenomas by direct fluorescence in situ hybridization. Endocr Pathol 7:203–206, 1996.

    PubMed  Google Scholar 

  29. Tanaka C, Kimura T, Yang P, Moritani M, Yamaoka T, Yamada S, Sano T, Yoshimoto K, Itakura M. Analysis of loss of heterozygosity on chromosome 11 and infrequent inactivation of the MEN1 gene in sporadic pituitary adenomas J Clin Endocrinol Metab 83:2617–2620, 1998.

    Article  Google Scholar 

  30. Zhuang Z, Ezzat SZ, Vortmeyer AO, et al. Mutations of the MEN1 tumor suppressor gene in pituitary adenomas. Cancer Res 57:5446–5451, 1997.

    PubMed  CAS  Google Scholar 

  31. Tanaka C, Yoshimoto K, Yang P, Kimura T, Yamada S, Moritani M, Sano T, Itakura M. Infrequent mutations of p27Kip1 gene and trisomy 12 in a subset of human pituitary adenomas. J Clin Endocrinol Metab 82:3141–3147, 1997.

    Article  PubMed  CAS  Google Scholar 

  32. Daniel M, Aviram A, Adams EF, Buchfelfer M, Berkai G, Fahlbousch R, Goldman B, Friedman E. Comparative genomic hybridization analysis of nonfunctioning pituitary tumors. J Clin Endocrinol Metab 83:1801–1805, 1998.

    Article  Google Scholar 

  33. Metzger AK, Mohapatra G, Minn YA, Bollen AW, Lamborn K, Waldman FM, Wilson CB, Feuerstein BG. Multiple genetic aberrations including evidence of chromosome 11q13 rearrangement detected in pituitary adenomas by comparative genomic hybridization. J Neurosurg 90:306–314, 1999.

    Article  PubMed  CAS  Google Scholar 

  34. Ciado B, Barros A, Suijkebuijk R, Olde-Weghuis D, Secura R, Fonseca E, Castedo S. Detection of numerical alterations of chromosomes 7 and 12 in benign thyroid lesions by in situ hybridization. Am J Pathol 147:136–144, 1995.

    Google Scholar 

  35. Roque L, Sarpa A, Clode A, Castedo S, Soares J. Significance of trisomy 7 and 12 in thyroid lesions with follicular differentiation. Lab Invest 79:369–378, 1999.

    PubMed  CAS  Google Scholar 

  36. Gaussen A, Legal JD, Beron-Gaillard N, Laplanche A, Travagli JP, Caillou B, Parmentier C. Radiosensitivity of human normal and tumoral thyroid cells using fluorescence in situ hybridization and clonogenic survival assay. Int J Radiat Oncol Biol Phys 44:683–691, 1999.

    Article  PubMed  CAS  Google Scholar 

  37. Roque L, Soares J, Castedo S. Cytogenetic and fluorescence in situ hybridization studies in a case of anaplastic thyroid carcinoma. Cancer Genetics Cytogenetics 103:7–10, 1998.

    Article  CAS  Google Scholar 

  38. Lehmann L, Greulich KM, Zitzelsberger H, Negele T, Spelsberg F, Bauchinger M, Weier HU. Cytogenetic and molecular genetic characterization of a chromosome 2 rearrangement in a case of human papillary thyroid carcinoma with radiation history. Cancer Genetics Cytogenetics 96:30–36, 1997.

    Article  CAS  Google Scholar 

  39. Mole SE, Mulligan LM, Healey CS, Ponder BA, Tunnacliffe A. Localisation of the gene for multiple endocrine neoplasia type 2A to a 480 kb region in chromosome 10q.11.2. Hum Mol Genetics 2:247–252, 1993.

    Article  CAS  Google Scholar 

  40. Jossart GH, Greulich KM, Spierstein AE, Duh Q, Clark OH, Weier H-UG. Molecular and cytogenetic characterization of a t(1;20;21) translocation in the human papillary thyroid cancer line TCP-1 expressing the ret/H4 chimeric transcript. Surgery 118:1018–1023, 1995.

    Article  PubMed  CAS  Google Scholar 

  41. Hemmer S, Wasenius VM, Knuutila S, Franssila K, Joensuu H. DNA copy number changes in thyroid carcinoma. Am J Pathol 154:1539–1547, 1999.

    PubMed  CAS  Google Scholar 

  42. Görtz B, Roth J, Speel EJ, Krähenmann A, De Krijger RR, Matias-Guiu X, Muletta-Feurer S, Rütmann K, Saremaslani P, Heitz PU, Komminoth P. MEN1 gene mutation analysis of sporadic adrenocortical lesions. Int J Cancer 80:373–379, 1999.

    Article  PubMed  Google Scholar 

  43. Fukushige S, Waldman FM, Kimura M, Abe T, Furukawa T, Sunamura M, Kobari M, Horii A. Frequent gain of copy number on the long arm of chromosome 20 in human pancreatic adenocarcinoma. Genes Chromosomes Cancer 19:161–169, 1997.

    Article  PubMed  CAS  Google Scholar 

  44. Biunno I, Cattaneo M, Leone BE, Balzano G, Socci C, Saccone S, Letizia A, Della Valle G, Sgaramella V. Isolation of a pancreas-specific gene located on human chromosome 14q31: expression analysis in human pancreatic ductal carcinomas. Genomics 46:284–286, 1997.

    Article  PubMed  CAS  Google Scholar 

  45. Herrmann ME, Rydstedt LL, Talpos GB, Trevor KT, Wolman SR, Mohamed AN, Ratner S, Lalley PA. Chromosomal aberrations in two sporadic gastrinomas. Cancer Genetics Cytogenetics 67:44–49, 1993.

    Article  CAS  Google Scholar 

  46. Zhuang Z, Vortmeyer AO, Pack S, et al. Somatic mutations of the MEN1 tumor suppressor gene in sporadic gastrinomas and insulinomas. Cancer Res 57:4682–4686, 1997.

    PubMed  CAS  Google Scholar 

  47. Walch AK, Zizelsberger HF, Aubele MM, Mattis AE, Bauchinger M, Candidus S, Präuer HW, Werner M, Höfler H. Typical and atypical carcinoid tumors of the lung are characterized by 11q deletions as detected by comparative genomic hybridization. Am J Pathol 153:1089–1098, 1998.

    PubMed  CAS  Google Scholar 

  48. Harle M, Arens N, Moll I, Back W, Schulz T, Scherthan H. Comparative genomic hybridization (CGH) discloses chromosomal and subchromosomal copy number changes in Merkel cell carcinomas. J Cutan Pathol 23:391–397, 1996.

    Article  PubMed  CAS  Google Scholar 

  49. Chandrasekharappa SC, Guru SC, Manickan P, et al. Positional cloning of the gene for the multiple endocrine neoplasia-type 1. Science 276:404–407, 1997.

    Article  PubMed  CAS  Google Scholar 

  50. Guru SG, Goldsmith PK, Burns AL, Marx SJ, Spiegel AM, Collins FS, Chandrasekharappa SC. Menin, the product of the MEN1 gene, is a nuclear protein. Proc Natl Acad Sci USA 95:1630–1634, 1998.

    Article  PubMed  CAS  Google Scholar 

  51. Kontogeorgos G, Kapranos N, Tzavara I, Thalassinos N, Rologis D. Monosomy of chromosome 11 in pituitary adenoma in a patient associated with familial multiple endocrine neoplasia type 1. Clin Endocrinol, 1999, in press.

  52. Kytölä S, Mäkinen MJ, Kähkönen M, Teh BT, Leisti J, Samela P. Comparative genomic hybridization in tumours from a patient with multiple endocrine neoplasia type 1. Eur Endocrinol 139:202–206, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kontogeorgos MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kontogeorgos, G. The art and applications of fluorescence in situ hybridization in endocrine pathology. Endocr Pathol 11, 123–136 (2000). https://doi.org/10.1385/EP:11:2:123

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/EP:11:2:123

Key Words

Navigation