Skip to main content
Log in

Phenylephrine, endothelin, prostaglandin F, and leukemia inhibitory factor induce different cardiac hypertrophy phenotypes in vitro, and leukemia inhibitory factor induce different cardiac hypertrophy phenotypes in vitro

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

In these studies, we show that endothelin (ET), leukemia inhibitory factor (LIF), phenylephrine (PE), and prostaglandin F(PGF), which are all hypertrophic for neonatal rat cardiac myocytes in culture, induce distinct morphological, physiological, and genetic changes after a 48-h treatment. Transmission electron microscopy revealed differences in myofibril organization, with ET-treated cells containing the most mature-looking myofibrils and PGF — and LIF-treated cells the least. ET- and PE-treated cultures contained the same number of beating cells as control, but LIF and PGF treatment increased the number of beating cells 180%. Treatment with LIF, PE, and PGF increased the beat rate to 3.3 times that of control. After exposure to the β-adrenergic agonist isoproterenol, the beat rate increased 50% for PGF, 54% for PE, 84% for LIF, and 125% for control. ET treatment did not increase the beat rate, nor did these cells respond to isoproterenol. ET, LIF, and PE increased the production of atrial natriuretic peptide (ANP) by three-fold and PGF by 18-fold over nontreated cells. Brain natriuretic peptide (BNP) was increased fourfold by ET and PE, 16-fold by LIF, and 29-fold by PGF. Interestingly, on a pmol/L basis, only LIF induced more BNP than ANP. Treatment with all agents led to a similar pattern of gene induction: increased expression of the embryonic genes for ANP and skeletal α-actin, and less than a twofold change in the constitutively expressed gene myosin light chain-2, with the exception that LIF did not induce skeletal α-actin. Each agent, however, induced ANP mRNA with a different time-course. We conclude that at least four distinct cardiac myocyte hypertrophy response programs can be induced in vitro. Further studies are necessary to determine whether these correlate to the different types of cardiac hypertrophy seen in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morkin, E. (1970). Science 167, 1499–1501.

    Article  PubMed  CAS  Google Scholar 

  2. Anversa, P., Olivetti, G., Melssari, M., and Loud, A. V. (1980). J. Mol. Cell. Cardiol. 12, 781–795.

    Article  PubMed  CAS  Google Scholar 

  3. Anversa, P., Levicky, V., Beghi, C., McDonald, S. L., and Kikkawa, Y. (1983). Circ. Res. 52, 57–64.

    PubMed  CAS  Google Scholar 

  4. Gerdes, A. M., Campbell, S. E., and Hilbelink, D. R. (1988). Lab. Invest. 59, 857–861.

    PubMed  CAS  Google Scholar 

  5. Simpson, P., McGrath, A., and Savion, S. (1982). Circ. Res. 51, 787–801.

    PubMed  CAS  Google Scholar 

  6. Chien, K. R., Knowlton, K. U., Zhu, H., and Chien, S. (1991). FASEB J. 5, 3037–3046.

    PubMed  CAS  Google Scholar 

  7. Glembotski, C. C., Irons, C. E., Krown, K. A., Murray, S. F., Sprenkle, A. B., and Sei, C. A. (1993). J. Biol. Chem. 27, 20,646–20,652.

    Google Scholar 

  8. Pennica, D., King, K.L., Shaw, K. J., Luis, E., Rullamas, J., Luoh, S.-M., et al. (1995). Proc. Nat. Acad. Sci. USA 92, 1142–1146.

    Article  PubMed  CAS  Google Scholar 

  9. Shubieta, H. E., McDonough, P. M., Harris, A. N., Knowlton, K. U., Glembotski, C. C., Brown, J. H., and Chien, K. R. (1990). J. Biol. Chem. 265, 20,555–20,562.

    Google Scholar 

  10. Ito, H., Hirata, Y., Hiroe, M., Tsujino, M., Adachi, S., Takamoto, T., et al. (1991). Circ. Res. 69, 209–215.

    PubMed  CAS  Google Scholar 

  11. Suzuki, T., Hoshi, H., Sasaki, H., and Mitsui, Y. (1991) J. Cardiovasc. Pharmacol. 17(Suppl. 7), S182-S186.

    Article  PubMed  CAS  Google Scholar 

  12. King, K. L., Lai, J., Winer, J., Luis, E., Yen, R., Hooley, J., et al. (1996) Endocrine 5, 85–93.

    CAS  Google Scholar 

  13. Adams, J. W., Migita, D. S., Yu, M., Young, R., Hellickson, M. S., Castro-Vargas, F. E., et al. (1996). J. Biol. Chem. 271, 1179–1186.

    Article  PubMed  CAS  Google Scholar 

  14. Lai, J., Winer, J., Yen, R., Li, W., King, K. L., Jin, H., et al. (1996). Am. J. Physiol. 271, H2197-H2208.

    PubMed  CAS  Google Scholar 

  15. Brodde, O.-E., Michel, M. C., and Zerkowski, H.-R. (1995). Cardiovasc. Res. 30, 570–584.

    Article  PubMed  CAS  Google Scholar 

  16. Gibson, U. E. M., Heid, C. A., and Williams, P. M. (1996). Genome Res. 6, 995–1001.

    Article  PubMed  CAS  Google Scholar 

  17. Rhee, D., Sanger, J. M., and Sanger J. W. (1994). Cell Motil. Cytoskel. 28, 1–24.

    Article  CAS  Google Scholar 

  18. Forbes, M. S. and Sperelakis, N. (1989). In: Physiology and Pathophysiology of the Heart. Sperelakis, N. (ed.) Kluwer: Boston. pp. 3–41.

    Google Scholar 

  19. Sperelakis, N. and Lemkuhl, D. (1964). J. Gen. Physiol. 47, 895–927.

    Article  PubMed  CAS  Google Scholar 

  20. Mukoyama, M., Nakao, K., Hosoda, K., Suga, S., Saito, Y., Ogawa, Y., et al. (1991). J. Clin. Invest. 87, 1402–1412.

    PubMed  CAS  Google Scholar 

  21. Nakao, K., Ogawa, Y., Suga, S., and Imura, H. (1992). J. Hypertension 10, 907–912.

    CAS  Google Scholar 

  22. Horio, T., Kohno, M., and Takeda, T. (1993). Metabolism 42, 94–96.

    Article  PubMed  CAS  Google Scholar 

  23. Nakagawa, O., Itoh, H., Harada, M., Komatsu, Y., Yoshimasa, T., and Nakao, K. (1995). Clin. Exp. Pharmacol. Physiol. Suppl. 1, S183-S185.

    Google Scholar 

  24. Wollert, K. C., Taga, T., Saito, M., Narazaki, M., Kishimoto, T., Glembotski, C. C., et al. (1996). J. Biol. Chem. 271, 9535–9545.

    Article  PubMed  CAS  Google Scholar 

  25. Boheler, K. R. and Schwartz K. (1992). TCM 2, 176–182.

    CAS  Google Scholar 

  26. Calderone, A., Takahashi, N., Izzo, N. J., Thaik, C. M., and Colucci, W.S. (1995). Circulation 92, 2385–2390.

    PubMed  CAS  Google Scholar 

  27. Ito, H., Hiroe, M., Hirata, Y., Fujisaki, H., Adachi, S., Akimoto, H., et al. (1994). Circulation 89, 2198–2203.

    PubMed  CAS  Google Scholar 

  28. Schwartz, K., de la Bastie, D., Bouveret, P., Oliviero, P., Alonso, S., and Buckingham, M. E. (1986). Circ. Res. 59, 551–555.

    PubMed  CAS  Google Scholar 

  29. Izumo, S., Nadal-Ginard, B., and Mahdavi, V. (1988). Proc. Natl. Acad. Sci. USA 85, 339–343.

    Article  PubMed  CAS  Google Scholar 

  30. Boheler, K. R., Carrier, L., de la Bastie, D., Allen P. D., Komajda, M., Mercadier, J. J., et al. (1991). J. Clin. Invest. 88, 323–330.

    Article  PubMed  CAS  Google Scholar 

  31. Yorekane, R., Sakai, S., Miyauchi, T., Sakurai, T., and Goto, K. (1994). Arnzneimittel-Forschung 44, 412–415.

    Google Scholar 

  32. Moravic, C. S., Keller, E., and Bond, M. (1995). J. Mol. Cell. Cardiol. 27, 2101–2109.

    Article  Google Scholar 

  33. Nishikimi, T., Yoshihara, F., Morimoto, A., Ishikawa, T., Saito, Y., Kangawa, K., et al. (1996). Hypertension 28, 22–30.

    PubMed  CAS  Google Scholar 

  34. Bogoyevitch, M. A. and Sugden, P. H. (1996). Int. J. Biochem. Cell Biol. 28, 1–12.

    Article  PubMed  CAS  Google Scholar 

  35. Watanabe, T., Nakao, A., Emerling, D., Hashimoto, Y., Tsukamoto, K., Horie, Y., et al. (1994). J. Biol. Chem. 26, 17,619–17,625.

    Google Scholar 

  36. Boder, G. B., Harley, R. J., and Johnson, I. S. (1971). Nature 231, 531–532.

    Article  PubMed  CAS  Google Scholar 

  37. Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. (1996). Genome Res. 6, 986–994.

    Article  PubMed  CAS  Google Scholar 

  38. Winer, J. and Williams, P. M. (1998) manuscript submitted.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen L. King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, K.L., Winer, J., Phillips, D.M. et al. Phenylephrine, endothelin, prostaglandin F, and leukemia inhibitory factor induce different cardiac hypertrophy phenotypes in vitro, and leukemia inhibitory factor induce different cardiac hypertrophy phenotypes in vitro. Endocr 9, 45–55 (1998). https://doi.org/10.1385/ENDO:9:1:45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:9:1:45

Key Words

Navigation