Skip to main content
Log in

Norepinephrine content in the paraventicular nucleus of the hypothalamus as a function of photoperiod and dopaminergic tone

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The decline in the release of various anterior pituitary hormones, particularly prolactin (PRL), as a result of exposure to inhibitory, short-day photoperiods in long-day breeders is a well-documented phenomenon. This alteration in the hypothalamic-hypophyseal-gonadal axis is largely controlled by changes in the duration of the nocturnal melatonin pulse secreted by the pineal gland. Increased duration of melatonin secretion serves to increase the inhibitory activity of the tuberoinfundibular dopaminergic (TIDA) neurons, which in turn suppress PRL release and synthesis. However, other hypothalamic factors also appear to stimulate anterior pituitary function, working in concert with changes in TIDA activity to modulate circulating PRL levels under different photoperiod conditions. Past work from this laboratory has suggested that neurochemical changes at the level of the hypothalamic paraventricular nuclei (PVN), particularly changes in norepinephrine (NE) activity, may represent one of these modulatory influences.

The current study investigated potential alterations in NF, content within the PVN during the early stages of short-day exposure in Siberian hamsters. In addition, the interaction of NE content with the modulatory dopamine (DA) system was investigated via administration of a DA agonist (CB154) or antagonist (pimozide). Hamsters received CB 154 (500 µg), pimozide (45 µg), or control solution via the drinking water under either long days (16L:8D) or short days (10L:14D), and were sacrificed at 1, 3, or 5 wk of photoperiod and drug treatment. The brains were removed, and the PVN microdissected from the hypothalamus and analyzed for catecholamine content using high-pressure liquid chromatography with electrochemical detection (HPLC-EC). The results revealed the expected stimulation of circulating PRL under both photoperiods following pimozide administration, as well as the expected trend toward an accelerated suppression of PRL under short days induced by CB 154. For control animals, there were no changes in NE content, or the ratio of 3-methoxy-4-hydroxyphenyglycol (MHPG)/NE in long-day exposed animalx, but for short-day animals, both NE content and the ratio of MHPG/NE declined over time. Administration of CB 154 had only a marginal effect on NE content and the ratio of MHPG/NE, but pimozide administration resulted in a decline in NE content and an increase in the MHPG/NE ratio under short days, and an increase in NE content and the MHPG/NE ratio over time for long-day animals. These results suggest that both photoperiod and administration of a DA antagonist that increases circulating PRL levels induce alterations in NE terminal activity within the hypothalamic PVN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yellon, S. M. and Goldman, B. D. (1987). J. Reprod. Fert. 80, 167–174.

    Article  CAS  Google Scholar 

  2. Badura, L. L. and Nunez, A. A. (1989). Horm. Behav. 23, 27–42.

    Article  PubMed  CAS  Google Scholar 

  3. Tamarkin, L., Baird, C. J., and Alemida, O. F. X. (1985). Science 227, 714–720.

    Article  PubMed  CAS  Google Scholar 

  4. Carter, D. S. and Goldman, B. D. (1983). Endocrinology 113, 1261–1267.

    Article  PubMed  CAS  Google Scholar 

  5. Nelson, R. J., Badura, L. L., and Goldman, B. D. (1990). Ann. Rev. Psychol. 41, 81–108.

    Article  CAS  Google Scholar 

  6. Blask, D. E., Leadem, C. A., Orstead, M., and Larsen, B. R. (1986). Neuroendocrinology 42, 15–20.

    PubMed  CAS  Google Scholar 

  7. Badura, L. L. and Goldman, B. D. (1994). Neuroendocrinology 59, 49–56.

    PubMed  CAS  Google Scholar 

  8. Ben-Jonathan, N., Arbogast, L. A., and Hyde, J. F. (1989). Prog. Neurobiol. 33, 399–447.

    Article  PubMed  CAS  Google Scholar 

  9. Shin, S. H., Papas, S., and Obansawin, M. C. (1987). Can. J. Physiol. Pharmacol. 65, 2036–2043.

    PubMed  CAS  Google Scholar 

  10. Watts, A. G., Sheward, W. J., Whale, D., and Fink, G. (1989). CIJ. Endocrinology 122, 593–604.

    Article  CAS  Google Scholar 

  11. Badura, L. L. (1993). Endocrine 1, 299–305.

    Google Scholar 

  12. Doffi, C. and Taleisnik, S. (1982). Brain Res. 249, 281–290.

    Article  Google Scholar 

  13. Swanson, L. and Mogenson, G. (1981). Brain Res. Rev. 31, 1–34.

    Article  Google Scholar 

  14. Swanson, L., Sawchenko, P., and Lind, R. (1986). Brain Res. 68, 169–190

    Article  CAS  Google Scholar 

  15. Weiner, R. I., Findell, P. R., and Kordon, C. (1988). In: Knobil, E., and Neill, J., eds., Physiology of Reproduction, vol. 1. Raven, New York, pp. 1235–1281.

    Google Scholar 

  16. Gambardella, P., Greco, A. M., Sticchi, R., Bellotti, R., and Di Renzo, G. (1994). Chronbiol. Inter. 11, 213–221.

    CAS  Google Scholar 

  17. Greco, A. M., Gambardella, P., Sticchi, R., D’Aponte, D., and deFranciscis, P. (1992). Physiol. Behav. 52, 1167–1172.

    Article  PubMed  CAS  Google Scholar 

  18. Honma, K.-I., Noe, Y., Honma, S., Katsuno, Y., and Hiroshige, T. (1992). Am. J. Physiol. 262, E948-E955.

    PubMed  CAS  Google Scholar 

  19. Mitome, M., Honma, S., Yoshihara, T., and Honma, K.-I. (1994). Am. J. Physiol. 266, E606-E611.

    PubMed  CAS  Google Scholar 

  20. Badura, L. L. and Goldman, B. D. (1992). J. Exp. Zool. 261, 27–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori L. Badura PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woods, K.A., Buechi, K.A., Illig, A.M. et al. Norepinephrine content in the paraventicular nucleus of the hypothalamus as a function of photoperiod and dopaminergic tone. Endocr 8, 79–83 (1998). https://doi.org/10.1385/ENDO:8:1:79

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:8:1:79

Key Words

Navigation