Skip to main content
Log in

Arginine vasopressin inhibition of cytochrome P450c17 and testosterone production in mouse leydig cells

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The mechanism of arginine vasopressin (AVP) action in Leydig cells was investigated, and compared to the effects of phorbol-13-myristate-12-acetate (PMA) and interleukin-1β (IL-1β). Previous reports suggested that AVP inhibits Leydig cell testosterone production at the level of 17α-hydroxylase/C17-lyase activity. The present study confirms and extends these observations, and contrasts the effects of AVP to IL-1. In all experiments, macrophage-depleted Leydig cells were isolated from mice and maintained in primary culture for 5 d prior to initiation of treatments. Leydig cells were treated with 8-Br-cAMP plus increasing concentrations of AVP or IL-1β. AVP caused a significant and dose-dependent inhibition of cAMP-stimulated test-osterone production and P450c17 mRNA expression. IL-1β completely inhibited cAMP-stimulated testosterone production and P450c17 mRNA expression. PMA is a known activator of protein kinase C (PKC) and has been reported to inhibit Leydig cell steroidogenesis. Leydig cells express type V1 vasopressin receptors, which are coupled to PKC activation. The mechanism of IL-1 action in Leydig cells is not understood, but activation of the PKC pathway has been suggested for IL-1 action in other systems. Therefore, the effects of PMA on cAMP-stimulated steroidogenesis were compared to AVP and IL-1. Similar to the effects of AVP, PMA inhibited cAMP-stimulated testosterone production and P450c17 mRNA expression. To assess the possible involvement of PKC in AVP and IL-1 action in Leydig cells, the PKC inhibitor Calphostin C was tested. cAMP-stimulated testosterone production and P450c17 mRNA expression were significantly inhibited by 10 nM AVP (p < 0.05), and this inhibition was reversed by treatment with Calphostin C. Analogous experiments were performed to assess the role of PKC in IL-1 action. In contrast to the results for AVP, Calphostin C did not reverse the inhibitory effects of IL-1 on cAMP-stimulated P450c17 mRNA expression. To assess further PKC activation, myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation was analyzed. Only AVP and PMA, but not IL-1β, caused an increase in MARCKS phosphorylation. These results confirm that AVP and PMA activate PKC and indicate that IL-1 likely does not activate PKC in Leydig cells. The implications of AVP-mediated inhibition of steroidogenesis and potential role of MARCKS phosphorylation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosmann, H. B. Hales, K. H., Li, X., Lui, Z., Stocco, D. M., and Hales, D. B. (1996). Endocrinology 137, 4522–4525.

    Article  PubMed  CAS  Google Scholar 

  2. Hales, D. B., Hales, K. H., and Bosmann, H. B. (199). 2nd International Symposium on Molecular Steroidogenesis. Monterret, CA.

  3. Xiong, Y., and Hales, D. B. (1994). Endocr. J. 2, 223–228.

    CAS  Google Scholar 

  4. Turnbull, A. V., and River, C. (1996). Endocrinology 137, 455–463.

    Article  PubMed  CAS  Google Scholar 

  5. Cronenwett, J. L., Baver-Neff, B. S., Grekin, R. J., and Sheagren, J. N. (1986) J. Surg. Res. 41, 609–619.

    Article  PubMed  CAS  Google Scholar 

  6. Egan, J. W., Jugus, M., Kinter, L. B., Lee, K., and Smith, E. F. I. (1989). Circ. Shock. 29, 155–166.

    PubMed  CAS  Google Scholar 

  7. Kasting, N. W., Mazurek, M. F., and Martin, J. B., (1985). Am. J. Physiol. 248, E420–424.

    PubMed  CAS  Google Scholar 

  8. Kasting, N. W. (1989). Can. J. Physiol. Pharm. 66, 22–26.

    Google Scholar 

  9. Schaller, M. D., Waeber, B., Nussberger, J., and Brunner, H. R. (1985). Am. J. Physiol. 249, H1086–1092.

    PubMed  CAS  Google Scholar 

  10. Kasson, B. G., Adashi, E. Y., and Hsueh, A. J. W. (1986). Endocr. Rev. 7, 156–168.

    PubMed  CAS  Google Scholar 

  11. Saez, J. M. (1994). Endocr. Rev. 15, 574–626.

    Article  PubMed  CAS  Google Scholar 

  12. Tahri-Joutei, A. and Pointis, G. (1988). Life Sciences 43, 177–185.

    Article  PubMed  CAS  Google Scholar 

  13. Sayeed, M. M. (1996). New Horm. 4, 72–86.

    CAS  Google Scholar 

  14. Nielson, J. R., Hansen, H. S., and Jensen, B. (1989). Mol. Cell Endocrinol. 61, 181–188.

    Article  Google Scholar 

  15. Vinggaard, M. A., and Hansen, H. S. (1991). Mol. Cell Endocrinol. 79, 157–165.

    Article  PubMed  CAS  Google Scholar 

  16. Ascoli, M., Pignataro, O. P., and Segaloff, D. L. (1989). J. Biol. Chem. 264, 6674–6681.

    PubMed  CAS  Google Scholar 

  17. Hales, D. B. (1992). Endocrinology 131, 2165–2172.

    Article  PubMed  CAS  Google Scholar 

  18. Hales, D. B., Xiong, Y., and Tur-Kaspa, I. (1992). J. Steroid Biochem. Mol. Biol. 43, 907–914.

    Article  CAS  Google Scholar 

  19. Xiong, Y. and Hales, D. B. (1993). Endocrinology 132, 2438–2444.

    Article  PubMed  CAS  Google Scholar 

  20. Li, X., Youngblood, G. L., Payne, A. H., and Hales, D. B. (1995). Endocrinology 136, 3519–3526.

    Article  PubMed  CAS  Google Scholar 

  21. Dix, C. J., Habberfield, A. D., and Cooke, B. A. (1987). Biochem. J. 243, 373–377.

    PubMed  CAS  Google Scholar 

  22. Moger, W. H. (1985). Life Sci. 37: 869–873.

    Article  PubMed  CAS  Google Scholar 

  23. Mukhopadhyay, A. K., Bohnet, H. G., and Leindenberger, F. A. (1984). Biochem. Biophys. Res. Commun. 119, 1062–1067.

    Article  PubMed  CAS  Google Scholar 

  24. Mukhopadhyay, A. K. and Schumacher, M. (1985). FEBS Letts. 187, 56–60.

    Article  CAS  Google Scholar 

  25. Papadopoulos, V., Careau, S., and Drosdowsky, M. A. (1985). FEBS Letts. 188, 313–316.

    Article  Google Scholar 

  26. Rebois, R. V., and Patel, J. (1985). J. Biol. Chem. 260, 8026–8031.

    PubMed  CAS  Google Scholar 

  27. Bankers-Fulbright, J. L., Kalli, K. R., and McKean, D. J. (1996). Life Sci. 59: 61–83.

    Article  PubMed  CAS  Google Scholar 

  28. Kikkawa, U. and Nishizuka, Y. (1986). Annu. Rev. Cell Biol. 2, 149–178.

    Article  PubMed  CAS  Google Scholar 

  29. Aderem, A. (1995). Biochem. Soc. Trans. 23, 587–591.

    PubMed  CAS  Google Scholar 

  30. Aderem, A. (1992). Cell 71, 713–716.

    Article  PubMed  CAS  Google Scholar 

  31. Blackshear, P. J. (1993). In: Handbook of Endocrine Research Techniques. de Pablo, F., Scanes, C. G., and Weintraub, B. D., (eds.). Academic, San Diego, CA, pp. 339–355.

    Google Scholar 

  32. Lobaugh, L. A. and Blackshear, P. J. (1990). J. Biol. Chem. 265, 18,393–18,399.

    CAS  Google Scholar 

  33. Liu, J. P., Engler, D., Funder, J. W., and Robinson, P. J. (1994) Mol. Cell Endocrinol. 105, 217–226.

    Article  PubMed  CAS  Google Scholar 

  34. Vinggaard, A. M. and Hansen, H. S. (1993). J. Endocrinol. 136, 119–126.

    PubMed  CAS  Google Scholar 

  35. Nishizuka, Y. (1988). Nature 334, 661–665.

    Article  PubMed  CAS  Google Scholar 

  36. Dinarello, C. A. (1996). Blood 87, 2095–2147.

    PubMed  CAS  Google Scholar 

  37. Stewart, R. J. and Marsden, P. A. (1995). Am. J. Kidney Dis. 25, 954–966.

    PubMed  CAS  Google Scholar 

  38. Riches, D. W., Chan, E. D., and Winston, B. W. (1996). Immunobiology 195, 477–490.

    PubMed  CAS  Google Scholar 

  39. Naismith, J. H. and Sprang, S. R. (1996). J. Inflamm. 47: 1–7.

    CAS  Google Scholar 

  40. Grell, M. (1995). J. Inflamm. 47, 8–17.

    PubMed  CAS  Google Scholar 

  41. Aderem, A. (1992). Trends Biochem. Sci. 17, 438–443.

    Article  PubMed  CAS  Google Scholar 

  42. Hall, P. F. and Almahbobi, G. (1992). J. Steroid Biochem. Mol. Biol. 43, 769–777.

    Article  CAS  Google Scholar 

  43. Rivier, C. and Rivest, S. (1991) Biol. Reprod. 45, 523–532.

    Article  PubMed  CAS  Google Scholar 

  44. Ivell, R., Hunt, N., Hardy, M., Nicholson, H., and Pickering, B. (1992). Mol. Cell. Endocrinol. 89, 54–61.

    Article  Google Scholar 

  45. Foo, N.-C., Carter, D., Murphy, D., and Ivell, R. (1991). Endocrinology 128, 2118–2128.

    PubMed  CAS  Google Scholar 

  46. Fillion, C., Tahri-Joutei, A., Hugues, J. N., Allevard, A. M., Taib, N., and Pointis, G. (1994). Mol. Cell. Endocrinol. 99, 25–30.

    Article  PubMed  CAS  Google Scholar 

  47. Tahri-Joutei, A., Fillion, C., Bedin, M., Hugues, J.-N., and Pointis, G. (1991). Mol. Cell Endocrinol. 79, R21–24.

    Article  PubMed  CAS  Google Scholar 

  48. Tahri-Joutei, A. and Pointis, G. (1989). FEBS Lett. 254, 189–193.

    Article  PubMed  CAS  Google Scholar 

  49. Kasson, B. G. and Tuchel, T. M. (1989) Endocrinology 124, 2777–2784.

    PubMed  CAS  Google Scholar 

  50. Sharpe, R. M. and Cooper, I. (1987). J. Endocrinol. 113, 89–96.

    Article  PubMed  CAS  Google Scholar 

  51. Bardin, C. W., Chen, C.-L. C., Morris, P. L., Gerendai, I., Boitani, C., Liotta, A. S., et al. (1987). Rec. Prog. Horm. Res. 43, 1–28.

    PubMed  CAS  Google Scholar 

  52. Fabri, A., Knox, G., Buczko, E., and Dufau, M. L. (1988). Endocrinology 122, 749–755.

    Article  Google Scholar 

  53. Turnbull, A. and Rivier, C. (1995). Neuroimmunomodulation 2, 224–235.

    Article  PubMed  CAS  Google Scholar 

  54. Pitas, R. E., Innerarity, T., Weinstein, J. N., and Mahley, R. W. (1981). Arteriosclerosis 1, 177–185.

    PubMed  CAS  Google Scholar 

  55. Laemmli, U. K. (1970). Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Buchanan Hales PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hales, D.B., Greene, R. Arginine vasopressin inhibition of cytochrome P450c17 and testosterone production in mouse leydig cells. Endocr 8, 19–28 (1998). https://doi.org/10.1385/ENDO:8:1:19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:8:1:19

Key Words

Navigation