Skip to main content
Log in

CRH-stimulation of cyclic adenosine 5′-monophosphate pathway is partially inhibited by the coexpression of CRH-R1 and CRH-R2α

  • Case Reports
  • Published:
Endocrine Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2005

Abstract

Corticotropin-releasing hormone (CRH) is one of the major proteins responsible for brain stress regulation. Two well-known receptors have been described: type 1 and type 2α, both members of the receptor superfamily of G protein-coupled receptors (GPCR). We investigated receptor regulation when both CRH receptor subtypes are coexpressed in the same mammalian cell line. When both types of receptors are coexpressed, cAMP second messenger production is partially inhibited compared to when receptors are expressed separately. However, neither binding kinetics nor internalization rates are modified by coexpression of these receptors. To our knowledge this is the first demonstration of receptor interaction that results in the modification of CRH-mediated signal transduction pathway. Because CRH-R1 and CRH-R2α have overlapping mRNA expression patterns in the brain, these receptors may be coexpressed in neurons, suggesting that receptor interaction may play an important role in the effect evoked by CRH, contributing to the complexity of differential coupling of the CRH receptors in different endocrine and stress behavior responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vale, W., Spiess, J., Rivier, C., and Rivier, J. (1981). Science 213, 1394–1397.

    Article  PubMed  CAS  Google Scholar 

  2. Dautzenberg, F. M. and Hauger, R. L. (2002). Trends Pharmacol. Sci. 23, 71–77.

    Article  PubMed  CAS  Google Scholar 

  3. Hsu, S. Y. and Hsueh, A. J. W. (2001). Nat. Med. 7, 605–611.

    Article  PubMed  CAS  Google Scholar 

  4. Lewis, K., Li, C., Perrin, M. H., et al. (2001). Proc. Natl. Acad. Sci. USA 98, 7570–7575.

    Article  PubMed  CAS  Google Scholar 

  5. Chang, C. P., Pearse, R. V., 2nd, O’Connell, S., and Rosenfeld, M. G. (1993). Neuron 11, 1187–1195.

    Article  PubMed  CAS  Google Scholar 

  6. Chen, R., Lewis, K. A., Perrin, M. H., and Vale, W. W. (1993). Proc. Natl. Acad. Sci. USA 90, 8967–8971.

    Article  PubMed  CAS  Google Scholar 

  7. Vita, N., Laurent, P., Lefort, S., et al. (1993). FEBS Lett. 335, 1–5.

    Article  PubMed  CAS  Google Scholar 

  8. Kishimoto, T., Pearse, R.V., 2nd, Lin, C. R., and Rosenfeld, M. G. (1995). Proc. Natl. Acad. Sci. USA 92, 1108–1112.

    Article  PubMed  CAS  Google Scholar 

  9. Lovenberg, T. W., Liaw, C. L., Grigoriadis, D. E., et al. (1995). Proc. Natl. Acad. Sci. USA 92, 836–840.

    Article  PubMed  CAS  Google Scholar 

  10. Perrin, M., Donaldson, C., Chen, R., et al. (1995). Proc. Natl. Acad. Sci. USA 92, 2969–2973.

    Article  PubMed  CAS  Google Scholar 

  11. Potter, E., Sutton, S., Donaldson, C., et al. (1994). Proc. Natl. Acad. Sci. USA 91, 8777–8781.

    Article  PubMed  CAS  Google Scholar 

  12. Chalmers, D. T., Lovenberg, T. W., and De Souza, E. B. (1995). J. Neurosci. 15, 6340–6350.

    PubMed  CAS  Google Scholar 

  13. Hauger, R. L. and Dautzenberg, F. M. (2000). In: Neuroendocrinology in physiology and medicine. Conn, P. M. and Freeman, M. E. (eds.). Human Press: Totowa, NJ.

    Google Scholar 

  14. Ulisse, S., Fabbri, A., Tinajero, J. C., and Dufau, M. L. (1990). J. Biol. Chem. 268, 9–12.

    Google Scholar 

  15. Takuma, K., Matsuda, T., Yoshikawa, T., et al. (1994). Biochem. Biophys. Res. Commun. 199, 1103–1107.

    Article  PubMed  CAS  Google Scholar 

  16. Miyata, M., Okada, D., Hashimoto, K., Kano, M., and Ito, M. (1999). Neuron 22, 763–775.

    Article  PubMed  CAS  Google Scholar 

  17. Dautzenberg, F. M., Gutknecht, E., Van der Linden, I., Olivares-Reyes, J. A., Dürrenberger, F., and Hauger, R. L. (2004). Biochem. Pharmacol. 68, 1833–1844.

    Article  PubMed  CAS  Google Scholar 

  18. Hebert, T. E., Moffett, S., Morello, J. P., et al. (1996). J. Biol. Chem. 271, 16384–16392.

    Article  PubMed  CAS  Google Scholar 

  19. Cvejic, S. and Devi, L. A. (1997). J. Biol. Chem. 272, 26959–26964.

    Article  PubMed  CAS  Google Scholar 

  20. Ng, G. Y., O’Dowd, B. F., Lee, S. P., et al. (1996). Biochem. Biophys. Res. Commun. 227, 200–204.

    Article  PubMed  CAS  Google Scholar 

  21. Nimchinsky, E. A., Hof, P. R., Janssen, W. G., Morrison, J. H., and Schamauss, C. (1997). J. Biol. Chem. 272, 29229–29237.

    Article  PubMed  CAS  Google Scholar 

  22. George, S. R., Lee, S. P., Varghese, G., et al. (1998). J. Biol. Chem. 273, 30244–30248.

    Article  PubMed  CAS  Google Scholar 

  23. Jones, K. A., Borowsky, B., Tamm, J. A., et al. (1998). Nature 396, 674–679.

    Article  PubMed  CAS  Google Scholar 

  24. Kaupmann, K., Malitschek, B., Schuler, V., et al. (1998). Nature 396, 683–687.

    Article  PubMed  CAS  Google Scholar 

  25. White, J. H., Wise, A., Main, M. J., et al. (1998). Nature 396, 679–682.

    Article  PubMed  CAS  Google Scholar 

  26. Kuner, R., Kohr, G., Grunewald, S., Eisenhardt, G., Bach, A., and Kornau, H. C. (1999). Science 283, 74–77.

    Article  PubMed  CAS  Google Scholar 

  27. Chen, F. M., Bilezikjian, L. M., Perrin, M. H., Rivier, J., and Vale, W. (1986). Brain Res. 381, 49–57.

    Article  PubMed  CAS  Google Scholar 

  28. Battaglia, G., Webster, E. L., and De Souza, E. B. (1987). Synapse 1, 572–581.

    Article  PubMed  CAS  Google Scholar 

  29. Pihoker, C., Cain, S. T., and Nemeroff, C. B. (1992). Prog. Neuropsychopharmacol. Biol. Psychiatry 16, 581–586.

    Article  PubMed  CAS  Google Scholar 

  30. Haug, T. and Storm, J. F. (2000). J. Neurophysiol. 83, 2071–2079.

    PubMed  CAS  Google Scholar 

  31. Kroeger, K. M., Pfleger, K. D. G., and Eidne, K. A. (2004). Front. Neuroendocrinol. 24, 254–278.

    Article  CAS  Google Scholar 

  32. Gomes, I., Jordan, B. A., Gupta, A., Trapaidze, N., Nagy, V., and Devi, L. A. (2000). J. Neurosci. 20, RC110.

    Google Scholar 

  33. Rocheville, M., Lange, D. C., Kumar, S. C., Patel, S. C., Patel, R. C., and Patel, Y. C. (2000). Science 288, 154–157.

    Article  PubMed  CAS  Google Scholar 

  34. AbdAlla, S., Lother, H., el Massiery, A., and Quitterer, U. (2001). Nat. Med. 7, 1003–1009.

    Article  PubMed  CAS  Google Scholar 

  35. Cornea, A., Janovick, J. A., Maya-Núñez, G., and Conn, P. M. (2001). J. Biol. Chem. 276, 2153–2158.

    Article  PubMed  CAS  Google Scholar 

  36. Pfeiffer, M., Koch, T., Schroder, H., et al. (2001). J. Biol. Chem. 276, 14027–14036.

    PubMed  CAS  Google Scholar 

  37. Lavoie, C., Mercier, J. F., Salahpour, A., et al. (2002). J. Biol. Chem. 277, 35402–35410.

    Article  PubMed  CAS  Google Scholar 

  38. Brady, A. E. and Limbird, L. E. (2002). Cell. Signal 14, 297–309.

    Article  PubMed  CAS  Google Scholar 

  39. Handel, M., Schulz, S., Stanrius, A., et al. (1999). Neuroscience 89, 909–926.

    Article  PubMed  CAS  Google Scholar 

  40. Millian, M. J., Dekeyne, A., Rivet, J. M., Dubuffet, T., Lavielle, G., and Brocco, M. (2000). J. Pharmacol. Exp. Ther. 293, 1063–1073.

    Google Scholar 

  41. Olianas, M. C., Lampis, G., and Onali, P. (1995). J. Neurochem. 64, 402–407.

    Article  PubMed  CAS  Google Scholar 

  42. Hanyaloglu, A. C., Seeber, R. M., Kohout, T. A., Lefkowitz, R. J., and Eidne, K. A. (2002). J. Biol. Chem. 277, 50422–50430.

    Article  PubMed  CAS  Google Scholar 

  43. Guo, W., Shi, L., and Javitch, J. A. (2003). J. Biol. Chem. 278, 4385–4388.

    Article  PubMed  CAS  Google Scholar 

  44. Castro-Fernández, C., Maya-Núñez, G., and Méndez, J. P. (2004). Endocrine 25, 49–54.

    Article  PubMed  Google Scholar 

  45. Andrews, W. V. and Conn, P. M. (1986). Endocrinology 118, 1148–1158.

    Article  PubMed  CAS  Google Scholar 

  46. Rosendale, B. E., Jarrett, D. B., and Robinson, A. G. (1987). Endocrinology 120, 2357–2366.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Méndez.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12020-005-0001-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maya-Núñez, G., Castro-Fernández, C. & Méndez, P. CRH-stimulation of cyclic adenosine 5′-monophosphate pathway is partially inhibited by the coexpression of CRH-R1 and CRH-R2α. Endocr 27, 67–73 (2005). https://doi.org/10.1385/ENDO:27:1:067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:27:1:067

Key Words

Navigation