Skip to main content
Log in

Orexin a stimulates hypothalamic-pituitary-adrenal (HPA) axis function, but not food intake, in the absence of full hypothalamic NPY-ergic activity

  • Original Articles
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Neonatal monosodium l-glutamate (MSG) treatment destroys hypothalamic arcuate nucleus neuronal bodies, thus inducing several metabolic abnormalities. As a result, rats develop a phenotype characterized by hyperleptinemia and by impaired NPY but normal prepro-orexin hypothalamic mRNAs expression. Thus, our study was designed to explore whether hypothalamic effects of orexin A on food intake and glucocorticoid production develop in the absence of full hypothalamic NPY-ergic activity. For this purpose we evaluated, in control and MSG-treated rats, the consequences of intracere-broventricular (icv) orexin A administration on food intake and changes in circulating levels of ACTH and glucocorticoid. Our results indicate that orexin A icv treatment stimulated hypothalamic-pituitary-adrenal (HPA) axis activity in both MSG-damaged and normal animals, with this response even more pronounced in neurotoxin-damaged rats. Conversely, food intake was only enhanced by icv orexin A injection in normal rats. Our study further supports that acute hypothalamic effects of orexin A on food intake and glucocorticoid production are due to independent neuronal systems. While intact arcuate nucleus activity is needed for the orexinergic effect induced by icv orexin A administration, conversely, orexin A-stimulated HPA axis function takes place even in the absence of full NPY-ergic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalra, S. P., Dube, M. G., Pu, S., Xu, B., Horvath, T. L., and Kalra, P. S. (1999). Endocr. Rev. 20, 68–100.

    Article  PubMed  CAS  Google Scholar 

  2. Leibowitz, S. F. (1989). Ann. NY Acad. Sci. 575, 221–233.

    Article  PubMed  CAS  Google Scholar 

  3. Kalra, S. P., Dube, M. G., Sahu, A., Phelps, C. P., and Kalra, P. S. (1991). Proc. Natl. Acad. Sci. USA 88, 10931–10935.

    Article  PubMed  CAS  Google Scholar 

  4. Sakurai, T., Amemiya, A., Ishii, M., et al. (1998). Cell 92, 573–585.

    Article  PubMed  CAS  Google Scholar 

  5. Horvath, T. L., Diano, S., and van den Pol, A. N. (1999). J. Neurosci. 19, 1072–1087.

    PubMed  CAS  Google Scholar 

  6. Backberg, M., Hervieu, G., Wilson, S., and Meister, B. (2002). Eur. J. Neurosci. 15, 315–328.

    Article  PubMed  Google Scholar 

  7. Suzuki, R., Shimojima, H., Funahashi, H., et al. (2002). Neurosci. Lett. 324, 5–8.

    Article  PubMed  CAS  Google Scholar 

  8. Toshinai, K., Date, Y., Murakami, N., et al. (2003). Endocrinology 144, 1506–1512.

    Article  PubMed  CAS  Google Scholar 

  9. Ida, T., Nakahara, K., Kuroiwa, T., et al. (2000). Neurosci. Lett. 293, 119–122.

    Article  PubMed  CAS  Google Scholar 

  10. Jaszberenyi, M., Bujdoso, E., Pataki, I., and Telegdy, G. (2001). J. Neuroendocrinol. 12, 1174–1178.

    Article  Google Scholar 

  11. Russell, S. H., Small, C. J., Dakin, C. L., et al. (2001). J. Neuroendocrinol. 13, 561–566.

    Article  PubMed  CAS  Google Scholar 

  12. Samson, W. K., Taylor, M. M., Follwell, M., and Ferguson, A. V. (2002). Regul. Pept. 104, 97–103.

    Article  PubMed  CAS  Google Scholar 

  13. Brunton, P. J. and Russell, J. A. (2003). J. Neuroendocrinol. 15, 633–637.

    Article  PubMed  CAS  Google Scholar 

  14. Munck, A., Guyre, P. M., and Holbrook, N. J. (1984). Endocr. Rev. 5, 25–44.

    Article  PubMed  CAS  Google Scholar 

  15. Perelló, M., Moreno, G., Camihort, G., et al. (2004). Endocrine 24, 167–176.

    Article  PubMed  Google Scholar 

  16. Morris, M. J., Tortelli, C. F., Filippis, A., and Proietto, J. (1998). Regul. Pept. 75–76, 441–447.

    Article  PubMed  Google Scholar 

  17. Dolnikoff, M. S., Kater, C. E., Egami, M., de Andrade, I. S., and Marmo, M. R. (1988). Neuroendocrinology 48, 645–649.

    PubMed  CAS  Google Scholar 

  18. Macho, L., Fickova, M., Jezova, D., and Zorad, S. (2000). Physiol. Res. 49, S79-S85.

    PubMed  CAS  Google Scholar 

  19. Burde, R. M., Schainker, B., and Kayes, J. (1971). Nature 233, 58–60.

    Article  PubMed  CAS  Google Scholar 

  20. Redding, T. W., Schally, A. V., Arimura, A., and Wakabayashi, I. (1971). Neuroendocrinology 8, 245–255.

    PubMed  CAS  Google Scholar 

  21. Edwards, C. M., Abusnana, S., Sunter, D., Murphy, K. G., Ghatei, M. A., and Bloom, S. R. (1999). J. Endocrinol. 160, R7-R12.

    Article  PubMed  CAS  Google Scholar 

  22. Smart, D., Jerman, J. C., Brough, S. J., Neville, W. A., Jewitt, F., and Porter, R. A. (2000). Br. J. Pharmacol. 129, 1289–1291.

    Article  PubMed  CAS  Google Scholar 

  23. Date, Y., Ueta, Y., Yamashita, H., et al. (1999). Proc. Natl. Acad. Sci. USA 96, 748–753.

    Article  PubMed  CAS  Google Scholar 

  24. Peyron, C., Tighe, D. K., van den Pol, A. N., et al. (1998). J. Neurosci. 18, 9996–10015.

    PubMed  CAS  Google Scholar 

  25. Nambu, T., Sakurai, T., Mizukami, K., Hosoya, Y., Yanagisawa, M., and Goto, K. (1999). Brain. Res. 827, 243–260.

    Article  PubMed  CAS  Google Scholar 

  26. de Lecea, L., Kilduff, T. S., Peyron, C., et al. (1998). Proc. Natl. Acad. Sci. USA 95, 322–327.

    Article  PubMed  Google Scholar 

  27. Trivedi, P., Yu, H., MacNeil, D. J., Van der Ploeg, L. H., and Guan, X. M. (1998). FEBS Lett. 438, 71–75.

    Article  PubMed  CAS  Google Scholar 

  28. Larsen, P. J., Fledelius, C., Knudsen, L. B., and Tang-Christensen, M. (2001). Diabetes 50, 2530–2539.

    Article  PubMed  CAS  Google Scholar 

  29. Diano, S., Horvath, B., Urbanski, H. F., Sotonyi, P., and Horvath, T. L. (2003). Endocrinology 144, 3774–3778.

    Article  PubMed  CAS  Google Scholar 

  30. Bjorbaek, C., Elmquist, J. K., Michl, P., et al. (1998). Endocrinology 139, 3485–3491.

    Article  PubMed  CAS  Google Scholar 

  31. Zhu, Y., Yamanaka, A., Kunii, K., Tsujino, N., Goto, K., and Sakurai, T. (2002). Physiol. Behav. 77, 251–257.

    Article  PubMed  CAS  Google Scholar 

  32. Lu, X. Y., Bagnol, D., Burke, S., Akil, H., and Watson, S. J. (2000). Horm. Behav. 37, 335–344.

    Article  PubMed  CAS  Google Scholar 

  33. Jain, M. R., Horvath, T. L., Kalra, P. S., and Kalra, S. P. (2000). Regul. Pept. 87, 19–24.

    Article  PubMed  CAS  Google Scholar 

  34. Lopez, M., Seoane, L. M., Garcia, M. C., Dieguez, C., and Senaris, R. (2002). Neuroendocrinology 75, 34–44.

    Article  PubMed  CAS  Google Scholar 

  35. Broberger, C. (1999). Brain Res. 848, 101–113.

    Article  PubMed  CAS  Google Scholar 

  36. Tamura, H., Kamegai, J., Shimizu, T., Ishii, S., Sugihara, H., and Oikawa, S. (2002). Endocrinology 143, 3268–3275.

    Article  PubMed  CAS  Google Scholar 

  37. Dube, M. G., Kalra, S. P., and Kalra, P. S. (1999). Brain Res. 842, 473–477.

    Article  PubMed  CAS  Google Scholar 

  38. Kiss, A., Skultetyova, I., and Jezova, D. (1999). Neurol. Res. 21, 775–780.

    PubMed  CAS  Google Scholar 

  39. Wahlestedt, C., Skagerberg, G., Ekman, R., Heilig, M., Sundler, F., and Hakanson, R. (1987). Brain Res. 417, 33–38.

    Article  PubMed  CAS  Google Scholar 

  40. Blanco, M., Lopez, M., García-Caballero, T., et al. (2001). J. Clin. Endocrinol. Metab. 86, 1616–1619.

    Article  CAS  Google Scholar 

  41. Malendowicz, L. K., Tortorella, C., and Nussdorfer, G. G. (1999). J. Steroid Biochem. Mol. Biol. 70, 185–188.

    Article  PubMed  CAS  Google Scholar 

  42. Karteris, E., Machado, R. J., Chen, J., Zervous, S., Hillhouse, E. W., and Randeva, H. S. (2005). Am. J. Physiol. Endocrinol. Metab. In press.

  43. Spinedi, E., Johnston, C. A., and Negro-Vilar, A. (1984). Endocrinology 115, 267–272.

    Article  PubMed  CAS  Google Scholar 

  44. Larsen, P. J., Mikkelsen, J. D., Jessop, D., Lightman, S. L., and Chowdrey, H. S. (1994). J. Endocrinol. 141, 497–503.

    PubMed  CAS  Google Scholar 

  45. Magarinos, A. M., Estivariz, F., Morado, M. I., and De Nicola, A. F. (1988). Neuroendocrinology 48, 105–111.

    PubMed  CAS  Google Scholar 

  46. Perello, M., Gaillard, R. C., Chisari, A., and Spinedi, E. (2003). Neuroendocrinology 78, 176–184.

    Article  PubMed  CAS  Google Scholar 

  47. Skultetyova, I., Kiss, A., and Jezova, D. (1998). Neuroendocrinology 67, 412–420.

    Article  PubMed  CAS  Google Scholar 

  48. Heiman, M. L., Ahima, R. S., Craft, L. S., Schoner, B., Stephens, T. W., and Flier, J. S. (1997). Endocrinology 138, 3859–3863.

    Article  PubMed  CAS  Google Scholar 

  49. Spinedi, E., Giacomini, M., Jacquier, M. C., and Gaillard, R. C. (1991). Neuroendocrinology 53, 160–170.

    PubMed  CAS  Google Scholar 

  50. Chomczynski, P. and Sacchi, N. (1987). Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  51. Kanenishi, K., Ueno, M., Momose, S., et al. (2004). Neurosc. Lett. 368, 73–77.

    Article  CAS  Google Scholar 

  52. Giovambattista, A., Chisari, A. N., Gaillard, R. C., and Spinedi, E. (2000). Neuroendocrinology 72, 341–349.

    Article  PubMed  CAS  Google Scholar 

  53. McElroy, W. D. and Swanson, C. P. (eds.). (1974). Biostatistical analysis. Prentice-Hall-Englewood Cliffs: New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Spinedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, G., Perelló, M., Gaillard, R.C. et al. Orexin a stimulates hypothalamic-pituitary-adrenal (HPA) axis function, but not food intake, in the absence of full hypothalamic NPY-ergic activity. Endocr 26, 99–106 (2005). https://doi.org/10.1385/ENDO:26:2:099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:26:2:099

Key Words

Navigation