Skip to main content
Log in

Klotho protein activates the PKC pathway in the kidney and testis and suppresses 25-hydroxyvitamin D3 1α-hydroxylase gene expression

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Homozygous Klotho mutant (kl −/−) mice exhibit a variety of phenotypes resembling human aging, including arteriosclerosis, infertility, skin atrophy, osteoporosis, and short life span. Calcium abnormality, one of the phenotypes in kl −/− mice, is thought to be due to the elevated gene expression of 25-hydroxyvitamin D3 1α-hydroxylase in the kidney. We studied 25-hydroxyvitamin D3 1α-hydroxylase gene expression using a Klotho plasmid that we had previously constructed for Klotho protein production. It was found that Klotho protein medium upregulated cAMP and the PKC pathway, and suppressed 25-hydroxyvitamin D3 1α-hydroxylase in kidney cells. However, both cAMP and PKC are known to elevate 25-hydroxyvitamin D3 1α-hydroxylase gene expression, therefore, another unknown calcium regulation pathway using Klotho protein medium might exist. Furthermore, we found that activation of the PKC pathway by Klotho was observed only in the kidney and testis, where the Klotho gene is expressed, although activation of the cAMP pathway was observed in any kind of cell. These data suggest that calcium regulation through 25-hydroxyvitamin D3 1α-hydroxylase by Klotho depends on non-cAMP and a non-PKC pathway and that the Klotho protein may have different signaling pathways, depending on the Klotho gene expression in different cells and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuro-o, M., Matsumura, Y., Aizawa, H., et al. (1997). Nature 390, 45–51.

    Article  PubMed  CAS  Google Scholar 

  2. Nabeshima, Y. (2002). Ageing Res. Rev. 1, 627–638.

    Article  PubMed  CAS  Google Scholar 

  3. Matsumura, Y., Aizawa, H., Shiraki-Iida, T., Nagai, R., Kuro-o, M., and Nabeshima, Y. (1998). Biochem. Biophys. Res. Commun. 242, 626–630.

    Article  PubMed  CAS  Google Scholar 

  4. Shiraki-Iida, T., Aizawa, H., Matsumura, Y., et al. (1998). FEBS Lett. 424, 6–10.

    Article  PubMed  CAS  Google Scholar 

  5. Saito, Y., Yamagishi, T., Nakamura, T., et al. (1998). Biochem. Biophys. Res. Commun. 248, 324–329.

    Article  PubMed  CAS  Google Scholar 

  6. Takahashi, Y., Kuro, O. M., and Ishikawa, F. (2000). Proc. Natl. Acad. Sci. USA 97, 12407–12408.

    Article  PubMed  CAS  Google Scholar 

  7. Imura, A., Iwano, A., Tohyama, O., et al. (2004). FEBS Lett. 565, 143–147.

    Article  PubMed  CAS  Google Scholar 

  8. Koh, N., Fujimori, T., Nishiguchi, S., et al. (2001). Biochem. Biophys. Res. Commun. 280, 1015–1020.

    Article  PubMed  CAS  Google Scholar 

  9. Kamitani, A., Yamada, H., Kinuta, M., et al. (2002). Biochem. Biophys. Res. Commun. 294, 261–267.

    Article  PubMed  CAS  Google Scholar 

  10. Miyamoto, K., Ito, M., Segawa, H., and Kuwahata, M (2003). Nephrol. Dial. Transplant. 18(Suppl. 3), iii79–80.

    PubMed  CAS  Google Scholar 

  11. Yoshida, T., Fujimori, T., and Nabeshima, Y. (2002). Endocrinology 143, 683–689.

    Article  PubMed  CAS  Google Scholar 

  12. Tsujikawa, H., Kurotaki, Y., Fujimori, T., Fukuda, K., and Nabeshima, Y. (2003). Mol. Endocrinol. 17, 2393–2403.

    Article  PubMed  CAS  Google Scholar 

  13. Takeyama, K., Kitanaka, S., Sato, T., Kobori, M., Yanagisawa, J., and Kato, S. (1997). Science 277, 1827–1830.

    Article  PubMed  CAS  Google Scholar 

  14. Yoshida, N., Yoshida, T., Nakamura, A., Monkawa, T., Hayashi, M., and Saruta, T. (1999). J. Am. Soc. Nephrol. 10, 2474–2479.

    PubMed  CAS  Google Scholar 

  15. Yoshida, T., Yoshida, N., Nakamura, A., Monkawa, T., Hayashi, M., and Saruta, T. (1999). J. Am. Soc. Nephrol. 10, 963–970.

    PubMed  CAS  Google Scholar 

  16. Yang, J., Matsukawa, N., Rakugi, H., et al. (2003). Biochem. Biophys. Res. Commun. 301, 424–429.

    Article  PubMed  CAS  Google Scholar 

  17. Kato, Y., Arakawa, E., Kinoshita, S., et al. (2000). Biochem. Biophys. Res. Commun. 267, 597–602.

    Article  PubMed  CAS  Google Scholar 

  18. Deluca, H. F. and Cantorna, M. T. (2001). FASEB J. 15, 2579–2585.

    Article  PubMed  CAS  Google Scholar 

  19. Niwa, H., Yamamura, K., and Miyazaki, J. (1991). Gene 108, 193–199.

    Article  PubMed  CAS  Google Scholar 

  20. Bradford, M. M. (1976). Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  21. Walton, G. M., Bertics, P. J., Hudson, L. G., Vedvick, T. S., and Gill, G. N. (1987). Anal. Biochem. 161, 425–437.

    Article  PubMed  CAS  Google Scholar 

  22. Sukumaran, S. K. and Prasadarao, N. V. (2002). J. Biol. Chem. 277, 12253–12262.

    Article  PubMed  CAS  Google Scholar 

  23. Zhao, L. and Brinton, R. D. (2003). J. Neurosci. 23, 4228–4239.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Rakugi MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, M., Ishikawa, K., Matsukawa, N. et al. Klotho protein activates the PKC pathway in the kidney and testis and suppresses 25-hydroxyvitamin D3 1α-hydroxylase gene expression. Endocr 25, 229–234 (2004). https://doi.org/10.1385/ENDO:25:3:229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:25:3:229

Key Words

Navigation