, Volume 21, Issue 3, pp 209–215 | Cite as

Asymmetric effects of acute hemiovariectomy on steroid hormone secretion by the In situ ovary

  • Ana Isabel Barco
  • Angélica Flores
  • Roberto Chavira
  • Pablo Damián-Matsumura
  • Roberto Domínguez
  • María Esther Cruz


The acute effects of hemiovariectomy on progesterone, testosterone, estradiol, and luteinizing hormone (LH) concentrations in serum were studied in rats under the following experimental conditions: control, sham-operated (left or right), hemiovariectomized, bilateral adrenalectomized, and hemiovariectomized plus bilateral adrenalectomized. One-hour after surgery, the concentration of progesterone and testosterone in the serum of right-side sham-operated rats was significantly higher than in control animals. Testosterone concentration in serum in rats with the right ovary in situ was higher than in sham-operated animals; injecting atropine sulfate 1 h before surgery blocked such increase, while the same treatment to rats with the left ovary remaining in situ resulted in a significant increase of testosterone concentration. Adrenalectomy resulted in an increase of testosterone concentration, which was higher when atropine sulfate was injected before surgery. Our results support the idea that left and right ovaries play different roles in the regulation of hormone secretion, and that such differences are related to ovarian innervation.

Key Words

Asymmetry estrus day hemiovariectomy adrenalectomy steroid secretion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Greenwald, G. S. and Roy, S. K. (1994). In: The physiology of reproduction. Knobil, E. and Neild, J. D. (eds.). Raven Press: New York.Google Scholar
  2. 2.
    Otani, T. and Sasamoto, S. (1982). J. Reprod. Fertil. 65, 347–353.PubMedCrossRefGoogle Scholar
  3. 3.
    Chávez, R., Cruz, M. E., and Domínguez, R. (1987). J. Endocrinol. 113, 397–401.PubMedGoogle Scholar
  4. 4.
    Burden, H. W., Leonard, M., Smith, C. O., and Lawrence, I. E. Jr. (1983). Anat. Rec. 207, 623–627.PubMedCrossRefGoogle Scholar
  5. 5.
    Klein, C. M. and Burden, H. W. (1988). Neurosc. Lett. 85, 217–222.CrossRefGoogle Scholar
  6. 6.
    Malishevskaia, V. A. and Brindak, O. I. (1980). Arkhiv Anatomii, Gistologii I Embriologii 79, 95–99.PubMedGoogle Scholar
  7. 7.
    Bleier, W. J. and Ehteshami, M. (1981). J. Reprod. Fertil. 63, 181–183.PubMedCrossRefGoogle Scholar
  8. 8.
    Rao, Ch. V. and Edgerton, L. A. (1984). J. Reprod. Fertil. 70, 61–66.PubMedCrossRefGoogle Scholar
  9. 9.
    Domínguez, R., Cruz, M. E., and Chávez, R. (1988). In: Growth factors and the ovary. Hirshfield, A. N. (ed.). Plenum Press: New York.Google Scholar
  10. 10.
    Mittwoch, V. (1975). Lancet 1, 401–402.PubMedCrossRefGoogle Scholar
  11. 11.
    Marut, E. L. and Hodgen, G. D. (1982). Steroids 39, 461–469.PubMedCrossRefGoogle Scholar
  12. 12.
    Kornya, L., Bodis, J., Koppan, M., Tinneberg, H. R., and Torok, A. (2001). Gynecol. Obstet. Invest. 52, 104–107.PubMedCrossRefGoogle Scholar
  13. 13.
    Engeland, W. C. and Gann, D. S. (1989). Neuroendocrinology 50, 124–131.PubMedGoogle Scholar
  14. 14.
    Cross, B. A. and Silver, I. A. (1962). J. Reproduc. Fertil. 3, 377–395.CrossRefGoogle Scholar
  15. 15.
    Klein, C. M., Ray, R. H., and Burden, H. W. (1989). Brain Res. 479, 194–200.PubMedCrossRefGoogle Scholar
  16. 16.
    D’Albora, H., Lombide, P., and Ojeda, S. R. (2000). Cell Tissue Res. 300, 47–56.PubMedCrossRefGoogle Scholar
  17. 17.
    Ojeda, S. and Urbanski, H. F. (1994). In: The physiology of reproduction. Knobil, E. and Neill, J. D. (eds.). Raven Press: New York.Google Scholar
  18. 18.
    Burden, H. W. (1978). The vertebrate ovary. In: Comparative biology. Jones, R. E. (ed.). Plenum Press: New York.Google Scholar
  19. 19.
    Fritz, S., Wessler, I., Breitling, R., et al. (2001). J. Clin. Endocrin. Metab. 86, 349–354.CrossRefGoogle Scholar
  20. 20.
    Cardenas, H. (1992). Biol. Res. 25, 15–20.PubMedGoogle Scholar
  21. 21.
    Shors, T. J., Pickett, J., Wood, G., and Paczynski, M. (1999). Stress 3, 163–171.PubMedGoogle Scholar
  22. 22.
    Pudder, J. J., Freda, P. U., Goland, R. S., Ferin, M., and Wardlaw, S. I. (2000). J. Clin. Endocrin. Metab. 85, 2184–2188.CrossRefGoogle Scholar
  23. 23.
    Rivier, C. and Rivest, S. (1991). Biol. Reprod. 45, 523–532.PubMedCrossRefGoogle Scholar
  24. 24.
    Gerendai, I., Tóth, I. E., Boldogköi, Z., Medveczky, I., and Halász, B. (1998). Neuroendocrinology 68, 244–256.PubMedCrossRefGoogle Scholar
  25. 25.
    Chen, L. W., Guan, Z. L., and Ding, Y. Q. (1997). J. Hirnforschung. 38, 363–367.Google Scholar
  26. 26.
    Lawrence, J. E., Burden, H. W., and Louis, T. M. (1978). J. Reprod. Fertil. 53, 131–136.PubMedCrossRefGoogle Scholar
  27. 27.
    Nakamura, Y., Kato, H., and Terranova, P. F. (1992). Endocrinol. Jap. 39, 141–145.Google Scholar
  28. 28.
    Burden, H. W. and Lawrence, I. E. Jr. (1977). Neuroendocrinology 23, 368–378.PubMedGoogle Scholar
  29. 29.
    Gerendai, I., Tóth, I. E., Boldogköi, Z., Medveczky, I., and Halász, B. (2000). J. Auton. Nervous Syst. 80, 40–45.CrossRefGoogle Scholar
  30. 30.
    Frankel, A. I., Chapman, J. C., and Cook, B. (1989). J. Endocrinol. 122, 485–488.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Ana Isabel Barco
    • 1
  • Angélica Flores
    • 1
  • Roberto Chavira
    • 2
  • Pablo Damián-Matsumura
    • 3
  • Roberto Domínguez
    • 1
  • María Esther Cruz
    • 1
  1. 1.Laboratorio de Neuroendocrinología, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores ZaragozaUNAMMéxico CityMéxico
  2. 2.Instituto Nacional de Ciencias Médicas y Nutrición, Salvador ZubiránMéxico CityMéxico
  3. 3.División de Ciencias Biológicas y de la SaludUAM IztapalapaMéxico CityMéxico

Personalised recommendations