Skip to main content
Log in

Calmodulin and a cyclic nucleotide-dependent protein kinase facilitate the prolactin-induced increase in tyrosine hydroxylase activity in tuberoinfundibular dopaminergic neurons

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Many aspects of tuberoinfundibular dopaminergic neuronal function are increased by elevated prolactin (PRL) levels, including the activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine. This study evaluated the roles of calmodulin, cyclic nucleotide-dependent protein kinase, and calcium/calmodulin-dependent protein kinase II in the PRL-induced increase in tyrosine hydroxylase activity. Ovariectomizerd rats were treated with haloperidol or ovine PRL (oPRL) for 20–30 h before the experiment, respectively. Treatment with haloperidol increased circulating PRL levels 8-fold and tyrosine hydroxylase activity in the stalk-median eminence 1.8-fold. Treatment with oPRL increased tyrosine hydroxylase activity 1.9-fold. W-7, a calmodulin antagonist, reversed both the haloperidol- and oPRL-induced increase in tyrosine hydroxylase activity to control levels. H-8, a cyclic nucleotide-dependent protein kinase inhibitor, also reversed the haloperidol induced increase in tyrosine hydroxylase activity. KN62, a selective calcium/calmodulin-dependent protein kinase II inhibitor, attenuated the haloperidol-induced increase in tyrosine hydroxylase activity, but KNO4, a structurally related control compound, had no effect. By contrast, the oPRL- and haloperidol-induced increases in tyrosine hydroxylase activity were not altered by KN93, a selective calcium/calmodulin-dependent protein kinase II inhibitor. These data indicate that calmodulin and a cyclic nucleotide-dependent protein kinase contribute to the PRL-induced increase in tyrosine hydroxylase activity, but the role of calcium/calmodulin-dependent protein kinase II is still unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Jonathan, N. (1994). Endocr. Rev. 6, 564–589.

    Article  Google Scholar 

  2. Moore, K. E. (1987). Biol. Reprod. 36, 47–58.

    Article  PubMed  CAS  Google Scholar 

  3. Arbogast, L. A. and Voogt, J. L. (1991). Endocrinology 128, 997–1005.

    PubMed  CAS  Google Scholar 

  4. Selmanoff, M., Shu, C., Hartman, R. D., Barraclough, C. A., and Petersen, S. L. (1991). Mol. Brain Res. 10, 277–281.

    Article  PubMed  CAS  Google Scholar 

  5. Selmanoff, M. (1985). Endocrinology 116, 1943–1952.

    PubMed  CAS  Google Scholar 

  6. Demarest, K. T., Riegle, G. D., and Moore, K. E. (1986). Neuroendocrinology 43, 291–299.

    PubMed  CAS  Google Scholar 

  7. Gudelsky, G. A. and Porter, J. C. (1980). Endocrinology 106, 526–529.

    PubMed  CAS  Google Scholar 

  8. Arbogast, L. A. and Voogt, J. L. (1997). Endocrinology 138, 3016–3023.

    Article  PubMed  CAS  Google Scholar 

  9. Lerant, A. and Freeman, M. E. (1998). Brain Res. 802, 141–154.

    Article  PubMed  CAS  Google Scholar 

  10. Hentschel, K., Cheung, S., Moore, K. E., and Lookingland, K. J. (1998). Neuroendocrinology 68, 71–76.

    Article  PubMed  CAS  Google Scholar 

  11. Levitt, M., Spector, S., Sjoerdsma, A., and Udenfriend, S. (1965). J. Pharmacol. Exp. Ther. 148, 1–8.

    PubMed  CAS  Google Scholar 

  12. Masserano, J. M. and Weiner, N. (1983). Mol. Cell. Biochem. 53/54, 129–152.

    Article  Google Scholar 

  13. Zigmond, R. E., Schwarzschild, M. A., and Rittenhouse, A. R. (1989). Annu. Rev. Neurosci. 12, 415–461.

    Article  PubMed  CAS  Google Scholar 

  14. Kumer, S. C. and Vrana, K. E. (1996). J. Neurochem. 67, 443–462.

    Article  PubMed  CAS  Google Scholar 

  15. Haycock, J. W. and Wakade, A. R. (1992). J. Neurochem. 58, 57–64.

    Article  PubMed  CAS  Google Scholar 

  16. Campbell, D. G., Hardie, D. G., and Vulliet, P. R. (1986). J. Biol. Chem. 261, 10,489–10,492.

    CAS  Google Scholar 

  17. Vulliet, P. R., Woodgett, J. R., Ferrari, S., and Hardie, D. G. (1985). FEBS Lett. 182, 335–339.

    Article  PubMed  CAS  Google Scholar 

  18. Haycock, J. W., Ahn, N. G., Cobb, M. H., and Krebs, E. G. (1992). Proc. Natl. Acad. Sci. USA 89, 2365–2369.

    Article  PubMed  CAS  Google Scholar 

  19. Arbogast, L. A. and Voogt, J. L. (1995). Endocrine 3, 801–806.

    CAS  Google Scholar 

  20. Hentschel, K., Fleckenstein, A. E., Toney, T. W., Lawson, D. M., Moore, K. E., and Lookingland, K. J. (2000). Brain Res. 852, 28–36.

    Article  PubMed  CAS  Google Scholar 

  21. Pasqualini, C., Guibert, B., Frain, O., and Leviel, V. (1994). J. Neurochem. 62, 967–977.

    Article  PubMed  CAS  Google Scholar 

  22. Arita, J. and Kimura, F. (1986). Endocrinology 119, 1666–1672.

    Article  PubMed  CAS  Google Scholar 

  23. Imai, S. and Onozuka, M. (1988). Comp. Biochem. Physiol. C 91, 535–540.

    PubMed  CAS  Google Scholar 

  24. Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. (1984). Biochemistry, 23, 5036–5041.

    Article  PubMed  CAS  Google Scholar 

  25. Tokumitsu, H., Chijiwa, T., Hagiwara, M., Mizutani, A., Terasawa, M., and Hidaka, H. (1990). J. Biol. Chem. 265, 4315–4320.

    PubMed  CAS  Google Scholar 

  26. Sumi, M., Kiuchi, K., Ishikawa, T., Ishii, A., Hagiwara, M., Nagatsu, T., and Hidaka, H. (1991). Biochem. Biophys. Res. Commun. 181, 968–975.

    Article  PubMed  CAS  Google Scholar 

  27. DeMaria, J. E., Lerant, A. A., and Freeman, M. E. (1999). Brain. Res. 837, 236–241.

    Article  PubMed  CAS  Google Scholar 

  28. Atkinson, J., Richtand, N., Schworer, C., Kuczenski, R., and Soderling, T. (1987). J. Neurochem. 49, 1241–1249.

    Article  PubMed  CAS  Google Scholar 

  29. Kizer, J. S., Humm, J., Nicholson, G., Greeley, G., and Young-blood, W. (1978). Brain Res. 146, 95–107.

    Article  PubMed  CAS  Google Scholar 

  30. Durham, R. A., Eaton, M. J., Moore, K. E., and Lookingland, K. J. (1997). Eur. J. Pharmacol. 335, 37–42.

    Article  PubMed  CAS  Google Scholar 

  31. Albarracin, C. T., Palfrey, H. C., Duan, W. R., Rao, M. C., and Gibori, G. (1994). J. Biol. Chem. 269, 7772–7776.

    PubMed  CAS  Google Scholar 

  32. Hidaka, H., Sasaki, Y., Tanaka, T., Endo, T., Ohno, S., Fujii, Y., and Nagata, T. (1981). Proc. Natl. Acad. Sci. USA 78, 4354–4357.

    Article  PubMed  CAS  Google Scholar 

  33. Greenberg, D. A., Carpenter, C. L., and Messing, R. O. (1987). Brain Res. 404, 401–404.

    Article  PubMed  CAS  Google Scholar 

  34. Schofl, C., Mader, T., Kramer, C., Waring, M., Krippeit-Drews, P., Prank, K., von zur Muhlen, A., Drews, G., and Brabant, G. (1999). Endocrinology 140, 5516–5523.

    Article  PubMed  CAS  Google Scholar 

  35. Jan, C.-R. and Tseng, C.-J. (2000). J. Pharmacol. Exp. Ther. 292, 358–365.

    PubMed  CAS  Google Scholar 

  36. Sorin, B., Vacher, A. M., Djiane, J., and Vacher, P. (2000). J. Neuroendocrinol. 12, 910–918.

    Article  PubMed  CAS  Google Scholar 

  37. Li, G., Hidaka, H., and Wollheim, C. B. (1992). Mol. Pharmacol. 42, 489–498.

    PubMed  CAS  Google Scholar 

  38. Tsutsui, M., Yanagihara, N., Fukunaga, K., Minami, K., Nakashima, Y., Kuroiwa, A., Miyamoto, E., and Izumi, F. (1996). J. Neurochem. 66, 2517–2522.

    Article  PubMed  CAS  Google Scholar 

  39. Parker Botelho, L. H., Rothermel, J. D., Coombs, R. V., and Jastorff, B. (1988). Methods Enzymol. 159, 159–172.

    Article  Google Scholar 

  40. Hidaka, H. and Kobayashi, R. (1992). Annu. Rev. Pharmacol. Toxicol. 32, 377–397.

    Article  PubMed  CAS  Google Scholar 

  41. Harris, J. E., Baldessarini, R. J., Morgenroth, V. H. III, and Roth, R. H. (1975). Proc. Natl. Acad. Sci. USA 72, 789–793.

    Article  PubMed  CAS  Google Scholar 

  42. Roskoski, R. Jr., Vulliet, P. R., and Glass, D. B. (1987). J. Neurochem. 48, 840–845.

    Article  PubMed  CAS  Google Scholar 

  43. Huang, S. K. and Pan, J. T. (1996). Neuroendocrinology 64, 208–214.

    PubMed  CAS  Google Scholar 

  44. Arbogast, L. A. and Voogt, J. L. (1994). Brain Res. 655, 17–24.

    Article  PubMed  CAS  Google Scholar 

  45. Arbogast, L. A., Shah, G. V., and Voogt, J. L. (1999). Endocrinology 140, 3273–3281.

    Article  PubMed  CAS  Google Scholar 

  46. Waymire, J. C., Craviso, G. L., Lichteig, K., Johnston, J. P., Baldwin, C., and Zigmond, R. E. (1991). J. Neurochem. 57, 1313–1324.

    Article  PubMed  CAS  Google Scholar 

  47. Goncalves, C. A., Hall, A., Sim, A. T., Bunn, S. J., Marley, P. D., Cheah, T. B., and Dunkley, P. R. (1997). J. Neurochem. 69, 2387–2396.

    Article  PubMed  CAS  Google Scholar 

  48. Rui, H., Kirken, R. A., and Farrar, W. L. (1994). J. Biol. Chem. 269, 5364–5368.

    PubMed  CAS  Google Scholar 

  49. Wakao, H., Gouilleux, F., and Groner, B. (1994). EMBO J. 13, 2182–2191.

    PubMed  CAS  Google Scholar 

  50. Campbell, G. S., Argetsinger, L. S., Ihle, J. N., Kelly, P. A., Rillema, J. A., and Carter-Su, C. (1994). Proc. Natl. Acad. Sci. USA 91, 5232–5236.

    Article  PubMed  CAS  Google Scholar 

  51. Watson, C. J. and Burdon, T. G. (1996). Rev. Reprod. 1, 1–5.

    Article  PubMed  CAS  Google Scholar 

  52. Ferrag, F., Goffin, V., Buteau, H., and Kelly, P. A. (1997). Cytokines Cell. Mol. Ther. 3, 197–213.

    PubMed  CAS  Google Scholar 

  53. Lerant, A., Kanyicska, B., and Freeman, M. E. (2001). Brain Res. 904, 259–269.

    Article  PubMed  CAS  Google Scholar 

  54. Hermans, E., Gailly, P., Gillis, J. M., Octave, J. N., and Maloteaux, J. M. (1995). J. Neurochem. 64, 2518–2525.

    Article  PubMed  CAS  Google Scholar 

  55. Zar, J. H. eds. (1984). Biostatistical analysis. Prentice-Hall: Englewood Cliffs, NJ.

    Google Scholar 

  56. Gerald, K. B. (1990). Nurse Anesth. 1, 162–165.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia A. Arbogast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbogast, L.A. Calmodulin and a cyclic nucleotide-dependent protein kinase facilitate the prolactin-induced increase in tyrosine hydroxylase activity in tuberoinfundibular dopaminergic neurons. Endocr 16, 105–112 (2001). https://doi.org/10.1385/ENDO:16:2:105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:16:2:105

Key Words

Navigation