Skip to main content
Log in

Total parenteral nutrition modulates hormone release by stimulating expression and activity of inducible nitric oxide synthase in rat pancreatic islets

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The expression and activities of constitutive nitric oxide synthase (cNOS) and inducible nitric oxide synthase (iNOS) in relation to insulin and glucagon secretory mechanisms were investigated in islets isolated from rats subjected to total parenteral nutrition (TPN) for 10 d. TPN is known to result in significantly increased levels of plasma lipids during the infusion time. In comparison with islets from freely fed control rats, islets taken from TPN rats at d 10 displayed a marked decrease in glucose-stimulated insulin release (4.65±0.45 ng/[islet·h] vs 10.25±0.65 for controls) (p<0.001) accompanied by a strong iNOS activity (18.3±1.1 pmol of NO/[min·mg of protein]) and a modestly reduced cNOS activity (11.3±3.2 pmol of NO/[min.mg of protein] vs 17.7±1.7 for controls) (p<0.01). Similarly, Western blots showed the expression of iNOS protein as well as a significant reduction in cNOS protein in islets from TPN-treated rats. The enhanced NO production, which is known to inhibit glucose-stimulated insulin release, was manifested as a strong increase in the cyclic guanosine 5′-monophosphate content in the islets of TPN-treated rats (1586±40 amol/islet vs 695±64 [p<0.001] for controls). Moreover, the content of cyclic adenosine monophosphate (cAMP) was greatly increased in the TPN islets (80.4±2.1 fmol/islet vs 42.6±2.6 [p<0.001] for controls). The decrease in glucose-stimulated insulin release was associated with an increase in the activity of the secretory pathway regulated by the cAMP system in the islets of TPN-treated rats, since the release of insulin stimulated by the phosphodiesterase inhibitor isobutylmethylxanthine was greatly increased both in vivo after iv injection and after in vitro incubation of isolated islets. By contrast, the release of glucagon was clearly reduced in islets taken from TPN-treated rats (33.5±1.5 pg/[islet·h] vs 45.5±2.2 for controls) (p<0.01) when islets were incubated at low glucose (1.0 mmol/L). The data show that long-term TPN treatment in rats brings about impairment of glucose-stimulated insulin release, that might be explained by iNOS expression and a marked iNOS-derived NO production in the β-cells. The release of glucagon, on the other hand, is probably decreased by a direct “nutrient effect” of the enhanced plasma lipids. The results also suggest that the islets of TPN-treated rats have developed compensatory insulin secretory mechanisms by increasing the activity of their β-cell cAMP system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moncada, S., Palmer, R. M. J., and Higgs, E. A. (1991). Pharmacol. Rev. 43, 109–142.

    PubMed  CAS  Google Scholar 

  2. Knowles, R. G. and Moncada, S. (1994). Biochem. J. 298, 249–258.

    PubMed  CAS  Google Scholar 

  3. Panagiotidis, G., Alm, P., and Lundquist, I. (1992). Eur. J. Pharmacol. 229, 277–278.

    Article  PubMed  CAS  Google Scholar 

  4. Schmidt, H. H. H. W., Warner, T. D., Ishii, K., Sheng, H., and Murad, F. (1992). Science 255, 721–723.

    Article  PubMed  CAS  Google Scholar 

  5. Corbett, J. A., Wang, J. L., Misko, T. P., Zhao, W., Hickey, W. F., and McDaniel, M. L. (1993). Autoimmunity 15, 145–153.

    PubMed  CAS  Google Scholar 

  6. Panagiotidis, G., Åkesson, B., Alm, P., and Lundquist, I. (1994). Endocrine 2, 787–792.

    CAS  Google Scholar 

  7. Alm, P., Ekström, P., Henningsson, R., and Lundquist, I. (1999). Diabetologia 42, 978–986.

    Article  PubMed  CAS  Google Scholar 

  8. Panagiotidis, G., Åkesson, B., Rydell, E., and Lundquist, I. (1995). Br. J. Pharmacol. 114, 289–296.

    PubMed  CAS  Google Scholar 

  9. Gross, R., Roye, M., Manteghetti, M., Hillaire-Buys, D., and Ribes, G. (1995). Br. J. Pharmacol. 116, 1965–1972.

    PubMed  CAS  Google Scholar 

  10. Salehi, A., Carlberg, M., Henningson, R., and Lundquist, I. (1996). Am. J. Physiol. 270, C1634-C1641.

    PubMed  CAS  Google Scholar 

  11. Åkesson, B., Mosén, H., Panagiotidis, G., and Lundquist, I. (1996). Br. J. Pharmacol. 119, 758–764.

    PubMed  Google Scholar 

  12. Salehi, A., Parandeh, F., and Lundquist, I. (1998). Cell Signal. 10, 645–651.

    Article  PubMed  CAS  Google Scholar 

  13. Tsuura, Y., Ishida, H., Shinomura, T., Nishimura, M., and Seino, Y. (1998). Biochem. Biophys. Res. Commun. 252, 34–38.

    Article  PubMed  CAS  Google Scholar 

  14. Henningsson, R. and Lundquist, I. (1998). Am. J. Physiol. 275, E500-E506.

    PubMed  CAS  Google Scholar 

  15. Åkesson, B., Henningsson, R., Salehi, A., and Lundquist, I. (1999). J. Endocrinol. 163, 39–48.

    Article  PubMed  Google Scholar 

  16. Åkesson, B. and Lundquist, I. (1999). J. Physiol. 515, 463–473.

    Article  Google Scholar 

  17. Henningsson, R., Alm, P., Ekström, P., and Lundquist, I. (1999). Diabetes 48, 66–76.

    Article  PubMed  CAS  Google Scholar 

  18. Henningsson, R., Alm, P., Lindström, E., and Lundquist, I. (2000). Am. J. Physiol. 279, E95-E107.

    CAS  Google Scholar 

  19. Corbett, J. A. and McDaniel, M. L. (1992). Diabetes 41, 897–903.

    Article  PubMed  CAS  Google Scholar 

  20. Eizirik, D. L. and Pavlovic, D. (1997). Diabetes/Metab. Rev. 13, 293–307.

    Article  CAS  Google Scholar 

  21. Mandrup-Poulsen, T. (1996). Diabetologia 39, 1005–1029.

    PubMed  CAS  Google Scholar 

  22. Unger, R. H. (1995). Diabetes 44, 863–870.

    Article  PubMed  CAS  Google Scholar 

  23. Sako, Y. and Grill, V. E. (1990). Endocrinology 127, 1580–1589.

    Article  PubMed  CAS  Google Scholar 

  24. Fan, B.-G., Salehi, A., Axelson, J., Sternby, B., Lundquist, I., Andrén-Sandberg, Å., and Ekelund, M. (1997). Pancreas 15, 147–153.

    Article  PubMed  CAS  Google Scholar 

  25. Vigili de Kreutzenberg, S., Lisato, G., Riccio, A., Giunta, F., Bonato, R., Petolillo, M., Tiengo, A., and Del Prato, S. (1988). Metabolism 37, 510–513.

    Article  PubMed  CAS  Google Scholar 

  26. Roth, B., Ekelund, M., Fan, B.-G., Hägerstrand, I., Salehi, A., Lundquist, I., and Nilsson-Ehle P. (1998). Intensive Care Med. 24, 716–724.

    Article  PubMed  CAS  Google Scholar 

  27. Shimabukuro, M., Ohneda, M., Lee, Y., and Unger, R. H. (1997). J. Clin. Invest. 100, 290–295.

    Article  PubMed  CAS  Google Scholar 

  28. Stamler, J. S., Simon, D. I., Osborne, J. A., Mullins, M. E., Jaraki, O., Michel, T., Singel, D. J., and Loscalzo, J. (1992). Proc. Natl. Acad. Sci. USA 89, 444–448.

    Article  PubMed  CAS  Google Scholar 

  29. Exton, J. H., Robinson, G. A., Sutherland, E. W., and Park, C. R. (1971). J. Biol. Chem. 246, 6166–6177.

    PubMed  CAS  Google Scholar 

  30. Bihler, J., Sarvh, P. C., and Sloan, J. G. (1978). Biochim. Biophys. Acta 510, 349–360.

    Article  PubMed  CAS  Google Scholar 

  31. Trovati, M. and Anfossi, G. (1998). Diabetologia 41, 609–622.

    Article  PubMed  CAS  Google Scholar 

  32. Lernmark, Å. (1974). Horm. Res. 5, 227–233.

    Article  PubMed  CAS  Google Scholar 

  33. Jones, P. M., Persaud, S. J., Bjaaland, T., Pearson, J. D., and Howell, S. L. (1992). Diabetologia 35, 1020–1027.

    Article  PubMed  CAS  Google Scholar 

  34. Hellman, B., Idahl, L.-Å., Lernmark, Å., Sehlin, J., and Täljedal, I.-B. (1974). Excerpt. Med. Int. Congr. Ser. 312, 65–78.

    Google Scholar 

  35. Ammon, H. P. T. and Mark, M. (1985). Cell Biochem. Funct. 3, 157–171.

    Article  PubMed  CAS  Google Scholar 

  36. Åkesson, B. and Lundquist, I. (1999). Endocrine 11, 99–107.

    Article  PubMed  Google Scholar 

  37. Salehi, A., Parandeh, F., and Lundquist, I. (1998). Biosci. Rep. 18, 19–28.

    Article  PubMed  CAS  Google Scholar 

  38. Åkesson, B. and Lundquist, I. (1998). Biosci. Rep. 18, 199–213.

    Article  PubMed  Google Scholar 

  39. Salehi, A., Fan, B.-G., Ekelund, M., Nordin, G., and Lundquist, I. (2001). Am. J. Physiol. (Endocrinol. Metab.) 281, E171-E179.

    CAS  Google Scholar 

  40. Gotoh, M., Maki, T., Kiyoizumi, T., Satomi, S., and Monaco, A. P. (1985). Transplantation 40, 437,438.

    Article  PubMed  CAS  Google Scholar 

  41. Heding, L. (1966). In: Labelled proteins in tracer studies. Donato, L., Milhaud, G., and Sirchis, J. (eds.). Euratom: Brussels.

    Google Scholar 

  42. Ahrén, B. and Lundquist, I. (1982). Diabetologia 22, 258–263.

    Article  PubMed  Google Scholar 

  43. Panagiotidis, G., Salehi, A., Westermark, P., and Lundquist, I. (1992). Diabetes Res. Clin. Pract. 18, 167–171.

    Article  PubMed  CAS  Google Scholar 

  44. Bradford, M. M. A. (1978). Anal. Biochem. 84, 309–312.

    Article  Google Scholar 

  45. Bruss, M. and Black, A. L. (1978). Anal. Biochem. 84, 309–312.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Salehi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salehi, A., Ekelund, M., Henningsson, R. et al. Total parenteral nutrition modulates hormone release by stimulating expression and activity of inducible nitric oxide synthase in rat pancreatic islets. Endocr 16, 97–104 (2001). https://doi.org/10.1385/ENDO:16:2:097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:16:2:097

Key Words

Navigation