Advertisement

Endocrine

, Volume 16, Issue 1, pp 43–46 | Cite as

Preliminary evidence that pharmacologic melatonin treatment decreases rat ghrelin levels

  • Anne-Mari MustonenEmail author
  • Petteri Nieminen
  • Heikki Hyvärinen
Article

Abstract

Ghrelin is a signal peptide isolated from rat stomach antagonistic to actions of leptin. Ghrelin stimulates the secretion of growth hormone (GH) and increases food intake, body mass, and adiposity in rodents. Photoperiod and melatonin regulate leptin secretion of mammals. The aim of the study was to investigate possible melatonin-ghrelin interactions in weight regulation by studying the effects of continuous pharmacologic melatonin treatment and constant light on plasma ghrelin, leptin, and GH levels in rats. Plasma ghrelin concentrations were significantly reduced by exogenous melatonin. Ghrelin levels correlated negatively with plasma leptin levels in control rats kept in 12 h of light/12 h of dark but not in the melatonin-treated animals. The inverse ghrelin-leptin relationship was also disrupted by constant illumination. The circulating ghrelin and GH levels may not be interrelated in all metabolic situations. The results suggest new interplay between the pineal gland and energy metabolism as well as reenforce the hypothesis that ghrelin is antagonistic to leptin.

Key Words

Ghrelin growth hormone leptin melatonin rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., and Kangawa, K. (1999). Nature 402, 656–660.PubMedCrossRefGoogle Scholar
  2. 2.
    Date, Y., Kojima, M., Hosoda, H., Sawaguchi, A., Mondal, M. S., Suganuma, T., Matsukura, S., Kangawa, K., and Nakazato, M. (2000). Endocrinology 141, 4255–4261.PubMedCrossRefGoogle Scholar
  3. 3.
    Howard, A. D., Feighner, S. D., Cully, D. F., et al. (1996). Science 273, 974–977.PubMedCrossRefGoogle Scholar
  4. 4.
    Casanueva, F. F. and Dieguez, C. (1999). Trends Endocrinol. Metab. 10, 30–38.PubMedCrossRefGoogle Scholar
  5. 5.
    Date, Y., Murakami, N., Kojima, M., Kuroiwa, T., Matsukura, S., Kangawa, K., and Nakazato, M. (2000). Biochem. Biophys. Res. Commun. 275, 477–480.PubMedCrossRefGoogle Scholar
  6. 6.
    Arvat, E., Di Vito, L., Broglio, F., Papotti, M., Muccioli, G., Dieguez, C., Casanueva, F. F., Deghenghi, R., Camanni, F., and Ghigo, E. (2000). J. Endocrinol. Invest. 23, 493–495.PubMedGoogle Scholar
  7. 7.
    Tschöp, M., Smiley, D. L., and Heiman, M. L. (2000). Nature 407, 908–913.PubMedCrossRefGoogle Scholar
  8. 8.
    Tschöp, M., Devanarayan, V., Weyer, C., Tataranni, P. A., Ravussin, E., and Heiman, M. L. (2001). Diabetes 50, 707–709.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J. M. (1994). Nature 372, 425–432.PubMedCrossRefGoogle Scholar
  10. 10.
    Maffei, M., Halaas, J., Ravussin, E., Pratley, R. E., Lee, G. H., Zhang, Y., Fei, H., Kim, S., Lallone, R., Ranganathan, S., Kern, P. A., and Friedman, J. M. (1995). Nat. Med. 1, 1155–1161.PubMedCrossRefGoogle Scholar
  11. 11.
    Pelleymounter, M. A., Cullen, M. J., Baker, M. B., Hecht, R., Winters, D., Boone, T., and Collins, F. (1995). Science 269, 540–543.PubMedCrossRefGoogle Scholar
  12. 12.
    Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., and Flier, J. S. (1996). Nature 382, 250–252.PubMedCrossRefGoogle Scholar
  13. 13.
    Vuagnat, B. A. M., Pierroz, D. D., Lalaoui, M., Englaro, P., Pralong, F. P., Blum, W. F., and Aubert, M. L. (1998). Neuroendocrinology 67, 291–300.PubMedCrossRefGoogle Scholar
  14. 14.
    Nakazato, M., Murakami, N., Date, Y., Kojima, M., Matsuo, H., Kangawa, K., and Matsukura, S. (2001). Nature 409, 194–198.PubMedCrossRefGoogle Scholar
  15. 15.
    Shintani, M., Ogawa, Y., Ebihara, K., Aizawa-Abe, M., Miyanaga, F., Takaya, K., Hayashi, T., Inoue, G., Hosoda, K., Kojima, M., Kangawa, K., and Nakao, K. (2001). Diabetes 50, 227–232.PubMedCrossRefGoogle Scholar
  16. 16.
    Arendt, J. (1995). Melatonin and the mammalian pineal gland. University Press: Cambridge, Great Britain.Google Scholar
  17. 17.
    Wade, G. N. and Bartness, T. J. (1984). Am. J. Physiol. 247, R328-R334.PubMedGoogle Scholar
  18. 18.
    Griffiths, D., Bjøro, T., Gautvik, K., and Haug, E. (1987). Acta Physiol. Scand. 131, 43–49.PubMedCrossRefGoogle Scholar
  19. 19.
    Rasmussen, D. D., Boldt, B. M., Wilkinson, C. W., Yellon, S. M., and Matsumoto, A. M. (1999). Endocrinology 140, 1009–1012.PubMedCrossRefGoogle Scholar
  20. 20.
    Ambid, L., Hanoun, N., Truel, N., Larrouy, D., André, M., Casteilla, L., and Pénicaud, L. (1998). Int. J. Obes. 22(Suppl. 3), 168.Google Scholar
  21. 21.
    Mustonen, A.-M., Nieminen, P., Hyvärinen, H., and Asikainen, J. (2000). Z. Naturforsch. 55C, 806–813.Google Scholar
  22. 22.
    Nieminen, P., Mustonen, A.-M., Asikainen, J., and Hyvärinen, H. (2002). J. Biol. Rhythms, in press.Google Scholar
  23. 23.
    Reiter, R. J. and Klein, D. C. (1971). J. Endocrinol. 51, 117–125.PubMedGoogle Scholar
  24. 24.
    Bubenik, G. A., Niles, L. P., Pang, S. F., and Pentney, P. J. (1993). Comp. Biochem. Physiol. 104C, 221–224.Google Scholar
  25. 25.
    Weaver, D. R., Namboodiri, M. A. A., and Reppert, S. M. (1988). FEBS Lett. 228, 123–127.PubMedCrossRefGoogle Scholar
  26. 26.
    Schneider, J. E., Blum, R. M., and Wade, G. N. (2000). Am. J. Physiol. 278, R476-R485.Google Scholar
  27. 27.
    O’Callaghan, D., Karsch, F. J., Boland, M. P., and Roche, J. F. (1991). Biol. Reprod. 45, 927–933.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Anne-Mari Mustonen
    • 1
    Email author
  • Petteri Nieminen
    • 1
  • Heikki Hyvärinen
    • 1
  1. 1.Department of BiologyUniversity of JoensuuJoensuuFinland

Personalised recommendations