Skip to main content
Log in

Receptor binding activity and in vitro biological activity of the human FSH charge isoforms as disclosed by heterologous and homologous assay systems

Implications for the structure-function relationship of the FSH variants

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Follicle-stimulating hormone (FSH) is produced and secreted in multiple molecular forms. These isoforms differ in their oligosaccharide structures, which determine the particular behavior of a given variant in in vitro and in vivo systems. Employing heterologous cell assay systems, this and other laboratories have shown that highly sialylated human FSH variants exhibit lower receptor binding/immunoactivity as well as in vitro bioactivity/immunoactivity relationships than their less sialylated counterparts. It is not known, however, whether this characteristics behavior of the FSH isoforms is reproduced by homologous assay systems, in which unique variants of the receptor are presumptively expressed. To gain further insights into the structure–activity relationship of the various FSH isoforms, we analyzed the capacity of nine charge isoforms obtained after high-resolution chromatofocusing (pH window, 7.10 to <3.80) of anterior pituitary glycoprotein extracts to bind and activate their cognate receptor expressed by naturally occurring heterologous cell systems (rat granulosa cells and seminiferous tubule homogenates) as well as by human embryonic kidneyderived 293 (HEK-293) cells transfected with the human FSH (FSH-R) receptor cDNA. In both (heterologous and homologous) receptor assay systems, the isoforms displaced 125I-labeled FSH from the receptor in a dose-response manner; however, whereas in the heterologous systems, the receptor binding activity varied according to the elution pH value/sialic content of the isoforms, with the less acidic variants exhibiting higher receptor binding activity (r=0.851 and 0.495 [p<0.01 and p<0.05] for the granulosa cell and testicular homogenate receptor assay systems, respectively) than the more acidic/sialylated analogs, in the homologous assay, this relationship was practically absent (r=0.372, p N.S.). The capacity of the isoforms to induce androgen aromatization by rat granulosa cells followed the same trend shown by its corresponding receptor assay system (r=0.864, p<0.01). Interestingly and in contrast to the results observed in the homologous receptor binding assay, the ability of the isoforms to induce cAMP production by HEK-293 cells varied according to their elution pH value, with the more sialylated isoforms exhibiting lower potency than their less acidic counterparts (r=0.852, p<0.01). The results yielded by the heterologous assays suggest that the different potency of the isoforms to elicit abilogical effect in a naturally occurring receptor system depends primarily on the particular affinity of the receptor molecule for each isoform. The existence of a clear dissociation between receptor binding and signal transduction in the homologous system indicate that this later function is rather related to the different ability of the FSH glycosylation variants to induce and/or stabilize distinct receptor conformations that may permit preferential or different degrees of activation/ inhibition of a given signal transduction pathway. Thus, the human FSH receptor-transducer system apparently possesses sufficient versatility to respond in a different manner to glycosylation-dependent diverse FSH signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pierce, J. G. and Parsons, T. F. (1981). Annu. Rev. Biochem. 50, 465–495.

    Article  PubMed  CAS  Google Scholar 

  2. Gharib, S. D., Wierman, M. E., Shupnik, M. A., and Chin, W. W. (1990), Endocr. Rev. 11, 177–199.

    Article  PubMed  CAS  Google Scholar 

  3. Sairam, M. R. (1989), FASEB J. 3, 1915–1026.

    PubMed  CAS  Google Scholar 

  4. Wilson, C. A., Leigh, A. J., and Chapman, A. J. (1990). J. Endocr. 125, 3–14.

    PubMed  CAS  Google Scholar 

  5. Ulloa-Aguirre, A., Midgely, A. R., Jr., Beitins, I. Z. and Padmanabhan V. (1995), Endocr. Rev. 16, 765–787.

    Article  PubMed  CAS  Google Scholar 

  6. Chappel, S. C., Coutifaris, C., and Jacobs, S. C. (1982) Endocrinology 110, 847–854.

    Article  PubMed  CAS  Google Scholar 

  7. Ullo-Aguirre, A., Mejía, J. J., Domínguez, R. Guevara-Aguirre, J., Díaz-Sánchez, V., and Larrea, F. (1986), J. Endocrinol. 110, 539–549.

    Google Scholar 

  8. Ulloa-Aguirre, A., Espinoza, R., Damián-Matsumura, P., Larrea, F., Flores, A., Morales, L., et al. (1988), Biol. Reprod. 38, 70–78.

    Article  PubMed  CAS  Google Scholar 

  9. Ulloa-Aguirre, A., Cravioto, A., Damián-Matsumura, P., Jiménez, M., Zambrano, E., and Díaz-Sánchez, V. (1992). Hum. Reprod. 7, 23–30.

    PubMed  CAS  Google Scholar 

  10. Stanton, P. G., Robertson, D. M., Burgon, P. G., Schmauk-White, B., and Hearn, M. T. W. (1992), Endocrinology 130, 2820–2832.

    Article  PubMed  CAS  Google Scholar 

  11. Simoni, M., Jockenhovel, F., and Nieschlag, E. (1994), J. Endocrinol. 141, 359–367.

    PubMed  CAS  Google Scholar 

  12. Padmanabhan, V., Lang, L. L., Sonstein, J., Kelch, R. P., and Beitins, I. (1988), J. Clin. Endocrinol. Metab. 67, 465–473.

    PubMed  CAS  Google Scholar 

  13. Ulloa-Aguirre, A., Damián-Matsumura, P., Espinoza, R., Domínguez, R., Morales, L., and Flores, A. (1990), J. Endocrinol. 126, 323–332.

    PubMed  CAS  Google Scholar 

  14. Wide, L., and Bakos, O. (1993), J. Clin. Endocrinol. Metab. 76, 885–889.

    Article  PubMed  CAS  Google Scholar 

  15. Zambrano, E., Olivares, A., Méndez, J. P., Guerrero, L., Díaz-Cueto, L., Veldhuis, J. D., et al. (1995), J. Clin. Endocrinol. Metab. 80, 1647–1656.

    Article  PubMed  CAS  Google Scholar 

  16. Ulloa-Aguirre, A., Miller, C., Hyland, L., and Chappel, S. C. (1984), Biol. Reprod. 30, 382–387.

    Article  PubMed  CAS  Google Scholar 

  17. Wide, L. and Hobson, B. M. (1986), Acta Endocrinol. (Copen.) 113, 17–22.

    CAS  Google Scholar 

  18. Cerpa-Poljak, A., Bishop, L. A., Hort, Y. J., Chin, C. K. H., DeKroon, R., Mahler, S. M., et al., (1993), Endocrinology 132, 351–356.

    Article  PubMed  CAS  Google Scholar 

  19. Flack, M. R., Bennet, A. P., Froehlich, J., Anasti, J. N., and Nisula, B. (1994), J. Clin. Endocrinol. Metab. 79, 756–760.

    Article  PubMed  CAS  Google Scholar 

  20. Mulders, J. W. M., Derksen, M., Swolfs, A., and Maris, F. (1997), Biologicals 25, 269–281.

    Article  PubMed  CAS  Google Scholar 

  21. Timossi, C., Damián-Matsumura, P., Domínguez-González, A., and Ulloa-Aguirre, A. (1998), Mol. Hum. Reprod. 4, 1032–1038.

    Article  PubMed  CAS  Google Scholar 

  22. Liu, L., Southers, J. L., Banks, S. M., Blithe, D. L., Wehmann, R. E., Brown, J. H., et al. (1989), Endocrinology 124, 175–180.

    PubMed  CAS  Google Scholar 

  23. Dias, J. A., Lindau-Shepard, B., Hauer, Ch., and Auger, I. (1998), Biol. Reprod. 58, 1331–1336.

    Article  PubMed  CAS  Google Scholar 

  24. Yarney, T. A., Jiang, L., Khan, H., MacDonald, E. A., Laird, D. W., and Sairam, M. R. (1997), Mol. Reprod. Dev. 48, 458–470.

    Article  PubMed  CAS  Google Scholar 

  25. Sairam, M. R., Jiang, L. G., Yarney, T. A., and Khan, H. (1997), Mol. Reprod. Dev. 48, 471–479.

    Article  PubMed  CAS  Google Scholar 

  26. Sairam, M. R., Jiang, L. G., Yarney, T. A., Khan, H., Jayashree, G. N., and Babu, P. S. (1998). Program and Abstracts of the 80th Annual Meeting of the Endocrine Society (USA), New Orleans, LA, p. 63, Abs. OR8-4.

  27. Baenziger, J. U. and Green, E. D. (1988), Biochim. Biophys. Acta 947, 287–306.

    PubMed  CAS  Google Scholar 

  28. Stanton, P. G., Burgon, P. G., Hearn, M. T. W., and Robertson, D. M. (1996), Mol. Cell. Endocrinol. 125, 133–141.

    Article  PubMed  CAS  Google Scholar 

  29. Robertson, W. R., Lambert, A., Mitchell, R., and Talbot, J. A., (1997). In: FSH Action and Intraovarian Regulation. Fauser, B. C. J. M. (ed.), Parthenon: London, pp. 33–50.

    Google Scholar 

  30. Zambrano, E., Barrios-de-Tomasi, J., Cárdenas, M., and Ulloa-Aguirre, A. (1996), Mol. Hum. Reprod. 2, 563–571.

    Article  PubMed  CAS  Google Scholar 

  31. Jarvin, D. L. and Finn, E. E. (1995), Virology 212, 500–501.

    Article  Google Scholar 

  32. Roth, K. E. and Dias, J. A. (1995), Mol. Cells. Endocrinol. 109, 143–149.

    Article  CAS  Google Scholar 

  33. Hattori, M., Ozawa, K., and Wakabayashi, K. (1985), Biochem. Biophys. Res. Commun. 127, 501–508.

    Article  PubMed  CAS  Google Scholar 

  34. Mulder, J. E., Schneyer, A. L., Taylor, A. E., Crowley, W. F., and Sluss, P. M. (1994), Endocr. J. 2, 25–31.

    CAS  Google Scholar 

  35. Ulloa-Aguirre, A. and Timossi, C. (1998), Hum. Reprod. Update 4, 260–283.

    Article  PubMed  CAS  Google Scholar 

  36. Timossi, C., Barrios-de-Tomasi, G., Zambrano, E., and Ulloa-Aguirre, A. (1998), Neuroendocrinology 67, 153–163.

    Article  PubMed  CAS  Google Scholar 

  37. Tilly, J. L., Aihara, T., Nishimori, K., Jia, X. C., Billing, H., Kowalski, E., et al. (1992), Endocrinology 131, 799–806.

    Article  PubMed  CAS  Google Scholar 

  38. Schaaf, L., Leiprecht, A., Saji, M., Hübner, U., Usadel, K. H., and Khon, L. D. (1997), Mol. Cell. Endocrinol. 132, 185–194.

    Article  PubMed  CAS  Google Scholar 

  39. Persani, L., Borgato, S., Romoli, R., Asteria, C., Pizzocaro, A., and Beck-Peccoz, P. (1998), J. Clin. Endocrinol. Metab. 83, 2486–2492.

    Article  PubMed  CAS  Google Scholar 

  40. Bex, F. J. and Corbin, A. (1981), Endocrinology 108, 273–280.

    PubMed  CAS  Google Scholar 

  41. Dufau, M. L., Tsurahara, T., and Catt, K. J. (1972), Biochem. Biophys. Acta 278, 281–292.

    PubMed  CAS  Google Scholar 

  42. Chappel, SC, Bashey, H. M., and Snyder, P. J. (1986), Acta Endocrinol. (Copenth.) 113, 311–316.

    CAS  Google Scholar 

  43. Jia, X. Ch. and Hsueh, A. J. W. (1985), Neuroendocrinol. 41, 445–448.

    CAS  Google Scholar 

  44. Guevara-Aguirre, J., Schoener, G., Ulloa-Aguirre, A., Pérez-Palacios, G., and Larrea, F. (1986), Int. J. Androl. 9, 381–392.

    Article  PubMed  CAS  Google Scholar 

  45. DeLean, A. P., Munson, P. J. and Rodbard, D. (1978), Am. J. Physiol. 235, E97-E102.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Ulloa-Aguirre MD, DSc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zambrano, E., Zariñán, T., Olivares, A. et al. Receptor binding activity and in vitro biological activity of the human FSH charge isoforms as disclosed by heterologous and homologous assay systems. Endocr 10, 113–121 (1999). https://doi.org/10.1385/ENDO:10:2:113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:10:2:113

Key words

Navigation