Skip to main content
Log in

Modification of environmental toxicity by nutrients

Implications in atherosclerosis

  • Original Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

We hypothesize that nutrition can modulate the toxicity of environmental pollutants and thus modulate health and disease outcome associated with chemical insult. There is now increasing evidence that exposure to persistent organic pollutants, such as PCBs, can contribute to the development of inflammatory diseases such as atherosclerosis. Activation, chronic inflammation, and dysfunction of the vascular endothelium are critical events in the initiation and acceleration of a therosclerotic lesion formation. Our studies indicate that an increase in cellular oxidative stress and an imbalance in antioxidant status are critical events in PCB-mediated induction of inflammatory genes and endothelial cell dysfunction. Furthermore, we have found that specific dietary fats can further compromise endothelial dysfunction induced by selected PCBs and that antioxidant nutrients (such as vitamin E and dietary flavonoids) can protect against endothelial cell damage mediated by these persistent organic pollutants. Our recent data suggest that membrane lipid rafts such as caveolae may play a major role in the regulation of PCB-induced inflammatory signaling in endothelial cells. In addition, PCB-and lipid-induced inflammation can be down-regulated by ligands of anti-atherogenic peroxisome proliferatoractivated receptors (PPARs). We hypothesize that PCBs contribute to an endothelial inflammatory response in part by down-regulating PPAR signaling. Our data so far support our hypothesis that antioxidant nutrients and related bioactive compounds common in fruits and vegetables protect against environmental toxic insult to the vascular endothelium by down-regulation of signaling pathways involved in inflammatory responses and atherosclerosis. Even though the concept that nutrition may modify or ameliorate the toxicity of environmental chemicals is provocative and warrants further study, the implications for human health could be significant. More research is needed to understand observed interactions of PCB toxicity with nutritional interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Puga, A, Sartor, M.A., Huang, M.Y., Kerzee, J.K., Wei, Y.D., Tomlinson, C.R., et al. (2004) Gene expression profiles of mouse aorta and cultured vascular smooth muscle cells differ widely, yet show common responses to dioxin exposure. Cardiovasc. Toxicol. 4:385–404.

    Article  PubMed  CAS  Google Scholar 

  2. Vogel, C.F., Sciullo, E., and Matsumura F. (2004). Activation of inflammatory mediators and potential role of ahreceptor ligands in foam cell formation. Cardiovasc. Toxicol. 4:363–374.

    Article  PubMed  CAS  Google Scholar 

  3. Pelelova, D., Fenclova, Z., Preiss, J., Prochazka, B., Spacil, J., Dubska, Z., et al. (2002). Lipid metabolism and neuropsychological follow-up study of workers exposed to 2,3,7,8-tetrachlordibenzo- p-dioxin. Int. Arch. Occup. Environ. Health 75(Suppl.): S60-S66.

    Google Scholar 

  4. Lind, P.M., Orberg, J., Edlund, U.B., Sjoblom, L., and Lind, L. (2004). The dioxin-like pollutant PCB 126 (3,3′,4,4′,5-pentachlorobiphenyl) affects risk factors for cardiovascular disease in female rats. Toxicol. Lett. 150293–299.

    Article  PubMed  CAS  Google Scholar 

  5. Arehart, E., Giasson, G., Walsh, M.T., and Patterson, H. (2004). Dioxin alters the human low-density and very lowdensity lipoprotein structure with evidence for specific quenching of Trp-48 in apolipoprotein C-II. Biochemistry 43: 8503–8509.

    Article  PubMed  CAS  Google Scholar 

  6. Mostaza, J.M., Vega, G.L., Snell, P., and Grundy, S.M., (1998). Abnormal, metabolism of free fatty acids in hypertriglyceridemic men: apparent insulin resistance of adipose tissue. J. Intern. Med. 243:265–274.

    Article  PubMed  CAS  Google Scholar 

  7. Hennig, B., Toborek, M., and McClain, C.J. (2001). Highenergy diets, fatty acids and endothelial cell function: implications for atherosclerosis. J. Am. Coll. Nutr. 20(2 Suppl.): 97–105.

    PubMed  CAS  Google Scholar 

  8. Egan B.M. (2003). Insulin resistance and the sympathetic nervous system. Curr. Hypertens. Rep. 5:247–254.

    Article  PubMed  Google Scholar 

  9. Toborek, M. and Hennig B (1998). The role of linoleic acid in endothelial cell gene expression. Relationship to atherosclerosis. Subcell. Biochem. 30: 415–436.

    PubMed  CAS  Google Scholar 

  10. Kok, F.J., van Poppel, G., Melse J. Verheul, E., Schouten, E.G., Kruyssen, D.H., et al. (1991). Do antioxidants and polyunsaturated fatty acids have a combined association with coronary atherosclerosis? Atherosclerosis 86:85–90.

    Article  PubMed  CAS  Google Scholar 

  11. Yam, D., Eliraz, A., and Berry, E. M. (1996). Diet and disease-the Israeli paradox: possible dangers of a high omega-6 polyunsaturated fatty acid diet. Isr. J. Med. Sci. 32: 1134–1143.

    PubMed  CAS  Google Scholar 

  12. Gustavsson, P. and Hogstedt, C. (1997). A cohort study of Swedish capacitor manufacturing workers exposed to polychlorinated biphenyls (PCBs). Am. J. Ind. Med. 32: 234–239.

    Article  PubMed  CAS  Google Scholar 

  13. Hay, A. and Tarrel, J. (1997). Mortality of power workers exposed to phenoxy herbicides and polychlorinated biphenyls in waste transformer, oil. Ann. NY Acad. Sci. 837: 138–156.

    Article  PubMed  CAS  Google Scholar 

  14. Bertazzi, P.A., Bernucci, I., Brambilla, G., Consonni, D., and Pesatori, A.C. (1998). The Seveso studies on early and long-term effects of dioxin exposure: a review. Environ. Health Perspect. 106(Suppl. 2)625–633.

    Article  PubMed  CAS  Google Scholar 

  15. Dalton, T.P., Kerzee J.K., Wang, B., Miller, M., Dieter, M.Z., Lorenz, J.N., et al. (2001). Dioxin exposure is an environmental risk factor for ischemic heart disease. Cardiovasc. Toxicol. 1:285–298.

    Article  PubMed  CAS  Google Scholar 

  16. Jokinen, M.P., Walker, N.J., Brix, A.E., Sells, D.M., Haseman, J.K., and Nyska, A. (2003). Increase in cardiovascular pathology in female Sprague-Dawley rats following chronic treatment with 2,3,7,8-tetrachlorodibenzop-dioxin and 3,3′,4,4′,5-pentachlorobiphenyl. Cardiovasc. Toxicol. 3:299–310.

    Article  PubMed  CAS  Google Scholar 

  17. Savouret, J.F., Berdeaux, A., and Casper, R.F. (2003). The aryl hydrocarbon receptor and its xenobiotic ligands: a fundamental trigger for cardiovascular diseases. Nutr. Metab. Cardiovasc. Dis. 13:104–113.

    Article  PubMed  CAS  Google Scholar 

  18. Hennig, B., Toborek, M., Ramadass, P., Ludewig, G. and Robertson, L.W. (2005). Polychlorinated biphenyls, oxidative stress and diet. In Reviews in Food and Nutrition Toxicity (Preedy, V.R. and Watson, R.R., eds), CRC Press. Boca Raton, FL.

    Google Scholar 

  19. Muller, J.M., Rupec, R.A., and Baeuerle, P.A. (1997). Study of gene regulation by NF-kappa B and AP-1 in response to reactive oxygen intermediates. Methods 11: 301–312.

    Article  PubMed  CAS  Google Scholar 

  20. Kunsch, C. and Medford, R.M. (1999). Oxidative stress as a regulator of gene expression in the vasculature. Circ. Res. 85:753–766.

    PubMed  CAS  Google Scholar 

  21. Hennig, B., Meerarani, P., Slim, R., Toborek, M., Daugherty, A., Silverstone, A.E., et al. (2002). Proinflammatory properties of coplanar PCBs: in vitro and in vivo evidence. Toxicol. Appl. Pharmacol. 181:174–183.

    Article  PubMed  CAS  Google Scholar 

  22. Kwon, O., Lee, E., Moon, T.C., Jung H., Lin C.X., Nam, K.S., et al. (2002) Expression of cyclooxygenase-2 and proinflammatory cytokines induced by 2,2′, 4,4′, 5,5′-hexachlorobiphenyl (PCB 153) in human mast cells requires NF-kappa B activation. Biol. Pharm. Bull. 25: 1165–1168.

    Article  PubMed  CAS  Google Scholar 

  23. Choi, W., Eum, S.Y., Lee, Y.W., Hennig., B., Robertson, L.W., and Toborek, M. (2003) PCB 104-induced proinflammatory reactions in human vascular endothelial cells: relationship to cancer metastasis and atherogenesis. Toxicol. Sci. 75:47–56.

    Article  PubMed  CAS  Google Scholar 

  24. Kamei, M., Ohgaki, S., Kanbe, T., Shimizu, M., Morita, S., Niiya, I., et al. (1996). Highly hydrogenated dietary soybean oil modifies the responses to polychlorinated biphenyls in rats. Lipids 31:1151–1156.

    Article  PubMed  CAS  Google Scholar 

  25. Kakela, R. and Hyvarinen, H. (1999). Fatty acid alterations caused by PCBs (Aroclor 1242) and copper in adipose tissue around lymph nodes of mink. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 122:45–53.

    Article  PubMed  CAS  Google Scholar 

  26. Boll, M., Weber, L.W., Messner, B., and Stampfl, A. (1998). Polychlorinated biphenyls affect the activities of gluconeogenic and lipogenic enzymes in rat liver is there an interferen with regulatory hormones actions? Xenobiotica 28:479–492.

    Article  PubMed  CAS  Google Scholar 

  27. Doi, A.M., Lou, Z., Holmes, E., Venugopal, C.S., James, M.O., et al. (2000). Effect of micelle fatty acid composition and 3,4,3′, 4′-tetrachlorobiphenyl (TCB) exposure on intestinal [(14)C]-TCB biovailability and biotransformation in channel catfish in situ preparations. Toxicol. Sci. 55:85–96.

    Article  PubMed  CAS  Google Scholar 

  28. Matsusue, K., Ishii, Y., Ariyoshi, N., and Oguri, K (1999). A highly toxic coplanar polychlorinated biphenyl compound suppresses Delta5 and Delta6 desaturase activities which play key roles in arachidonic acid synthesis in rat liver. Chem. Res. Toxicol. 12:1158–1165.

    Article  PubMed  CAS  Google Scholar 

  29. Hennig, B., Reiterer, G., Toborek, M., Matveev, S.V., Daugherty, A., Smart, E., et al. (2005). Dietary fat interacts with PCBs to induce changes in lipid metabolism in LDL receptor deficient mice. Environ. Health Perspect. 113:1–6.

    Google Scholar 

  30. Austin, M.A., McKnight, B., Edwards, K.L., Bradley, C.M., McNeely, M.J., Psaty, B.M., et al. (2000). Cardiovascular disease mortality in familial forms of hypertriglyceridemia: a 20-year prospective study. Circulation 101: 2777–2782.

    PubMed  CAS  Google Scholar 

  31. Malloy, M.J. and Kane, J.P., (2001). A risk factor for atherosclerosis: triglyceride-rich lipoproteins. Adv. Intern. Med. 47:111–136.

    PubMed  CAS  Google Scholar 

  32. Frank, P.G., Woodman, S.E., Park, D.S., and Lisanti, M.P. (2003). Caveolin, caveolae, and endothelial cell function. Arterioscler. Thromb. Vasc. Biol. 23:1161–1168.

    Article  PubMed  CAS  Google Scholar 

  33. Frank, P.G., Lee, H., Park, D.S., Tandon, N.N., Scherer, P.E., and Lisanti, M.P. (2004). Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24:98–105.

    Article  PubMed  CAS  Google Scholar 

  34. Matveev, S., Li, X., Everson, W., and Smart, E.J. (2001). The role of caveolae and caveolin in vesicle-dependent and vesicle-independent trafficking. Adv. Drug Deliv. Rev. 49:237–250.

    Article  PubMed  CAS  Google Scholar 

  35. Smart, E.J., Graf, G.A., McNiven, M.A., Sessa, W.C., Engelman, J.A., Scherer, P.E., et al. (1999). Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell Biol. 19:7289–7304.

    PubMed  CAS  Google Scholar 

  36. Trigatti, B.L., Anderson, R.G., and Gerber, G.E. (1999). Identification of caveolin-1 as a fatty acid binding protein. Biochem. Biophys. Res. Commun. 255:34–39.

    Article  PubMed  CAS  Google Scholar 

  37. Schroeder, F., Gallegos, A.M., Atshaves, B.P., Storey, S.M., McIntosh, A.L., Petrescu, A.D., et al. (2001). Recent advances in membrane microdomains: raft, caveolae, and intracellular cholesterol trafficking. Exp. Biol. Med 226: 873–890.

    CAS  Google Scholar 

  38. Pol, A., Martin, S., Fernandez, M.A., Ferguson, C., Carozzi, A., Luetterforst, R., et al. (2004). Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a domainan negative, mutant. Mol. Biol. Cell. 15:99–110.

    Article  PubMed  CAS  Google Scholar 

  39. Maikova, Z., Guo, H., Reiterer, G., Everson, W., Smart, E., Toborek, M., et al. (2004) Role of caveolin in proatherogenic inflammation caused by PCBs in vascular endothelial cells. FASEB J. 18:A870.

    Google Scholar 

  40. Machala, M. Blaha, L., Vondracek, J., Trosko, J.E., Scott, J., and Upham, B.L. (2003). Inhibition of gap junctional intercellular communication by noncoplanar polychlorinated biphenyls: inhibitory potencies and screening for potential mode(s) of action. Toxicol. Sci. 76:102–11.

    Article  PubMed  CAS  Google Scholar 

  41. Tilson, H.A., Kodavanti, P.R., Mundy, W.R., and Bushnell, P.J. (1998). Neurotoxicity of environmental chemicals and their mechanism of action. Toxicol. Lett. 102–103: 631–635.

    Article  PubMed  Google Scholar 

  42. Nabi, I.R., and Le, P.U. (2003). Caveolae/raft-dependent endocytosis. J. Cell Biol. 161:673–677.

    Article  PubMed  CAS  Google Scholar 

  43. Ramadass, P., Meerarani, P., Toborek, M., Robertson, L.W., and Henning, B. (2003). Dietary flavonoids modulate PCB-induced oxidative stress, CYP1A1 induction, and AhR-DNA binding activity in vascular endothelial cells. Toxicol. Sci. 76:212–219.

    Article  PubMed  CAS  Google Scholar 

  44. Maekawa, T., Kosuge, S., Karino, A., Okano, T., Ito, J., Munakata, H., et al. (2000). Biochemical characterization, of 60S acidic ribosomal P roteins from porcine liver and the inhibition of their immunocomplex formation with sera from systemic lupus erythematosus (SLE) patients by glycyrrhizin in vitro. Biol. Pharm. Bull. 23:27–32.

    PubMed  CAS  Google Scholar 

  45. Tedgui, A. and Mallat, Z. (2001). Anti-inflammatory mechanisms in the vascular wall. Circ. Res. 88:877–887.

    PubMed  CAS  Google Scholar 

  46. Tham, D.M., Wang, Y.X., and Rutledge, J.C. (2003). Modulation of vascular inflammation by PPARs. Drug News Perspect. 16:109–116.

    Article  PubMed  CAS  Google Scholar 

  47. Jiang, C., Ting, A.T., and Seed, B. (1998). PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391, 82–86.

    Article  PubMed  CAS  Google Scholar 

  48. Delerive, P., De Bosscher, K., Besnard, S., Vanden Berghe, W., Peters, J.M., Gonzalez, F.J., et al. (1999). Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk talk with transcription factors NF-kappaB and AP-1. J. Biol. Chem. 274:32048–32054.

    Article  PubMed  CAS  Google Scholar 

  49. Marx, N., Sukhova, G.K., Collins, T., Libby, P., and Plutzky, J. (1999). PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 99:3125–3131.

    PubMed  CAS  Google Scholar 

  50. Na, H.K. and Surh, Y.J. (2003). Peroxisome proliferator-activated receptor gamma (PPAR gamma) ligands as bifunctional regulators of cell proliferation. Biochem. Pharmacol. 66:1381–1391.

    Article  PubMed  CAS  Google Scholar 

  51. Cuzzocrea, S., Pisano, B., Dugo, L., Ianaro, A., Maffia, P., Patel, N.S., et al. (2004). Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation. Eur. J. Pharmacol. 483:79–93.

    Article  PubMed  CAS  Google Scholar 

  52. Alexander, D.L., Ganem, L.G., Fernandez-Salguero, P., Gonzalez, F. and Jefcoate, C.R. (1998). Aryl-hydrocarbon receptor is an inhibitory regulator of lipid synthesis and of commitment to adipogenesis. J. Cell Sci. 111:3311–3322.

    PubMed  CAS  Google Scholar 

  53. Hanlon, P.R., Ganem, L.G., Cho, Y.C., Yamamoto, M., and Jefcoate, C.R. (2003). AhR-and ERK-dependent pathways function synergistically to mediate 2,3,7,8-tetrachlorodibenzo-p-dioxin suppression of peroxisome proliferator-activated receptor-gammal expression and subsequent adipocyte differentiation. Toxicol. Appl. Pharmacol. 189: 11–27.

    Article  PubMed  CAS  Google Scholar 

  54. Remillard, R.B. and Bunce, N.J. (2002). Linking dioxins to diabetes: epidemiology and biologic plausibility. Environ. Health Perspect. 110(9)853–858.

    Article  PubMed  CAS  Google Scholar 

  55. Rodriguez-Ariza, A., Rodriguez-Ortega, M.J., Marenco, J.J., Amerzcua, O., Alhama, J., and Lopez-Barea J. (2003). Uptake and clearance of PCB congeners in Chamaelea gallina: response of oxidative stress biomarkers. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 134:57–67.

    Article  CAS  Google Scholar 

  56. Jin, X., Kennedy, S.W., Di Muccio, T., and Moon, T.W. (2001). Role of oxidative stress and antioxidant defense in 3,3′,4,4′-pentachlorobiphenyl-induced toxicity, and species-differential sensititity in chicken and duck embryos. Toxicol. Appl. Pharmacol. 172:241–248.

    Article  PubMed  CAS  Google Scholar 

  57. Twaroski, T.P., O'Brien, M.L., Larmonier, N., Glauert, H.P., and Robertson, L.W. (2001). Polychlorinated biphenyl-induced effects on metabolic enzymes. AP-1 binding, vitamin E, and oxidative stress in the rat liver. Toxicol. Appl. Pharmacol. 171(2):85–93.

    Article  PubMed  CAS  Google Scholar 

  58. Twaroski, T.P., O'Brien, M.L., and Robertson, L.W. (2001). Effect of selected polychlorinated biphenyl (PCB) congeners on hepatic glutathione, glutathione-related enzymes, and selenium status: implications for oxidative stress. Biochem. Pharmacol. 62: 273–281.

    Article  PubMed  CAS  Google Scholar 

  59. Slim, R., Toborek, M., Robertson, L.W., and Hennig, B. (1999). Antioxidant protection against PCB-mediated endothelial cell activation. Toxicol. Sci. 52(2):232–239.

    Article  PubMed  CAS  Google Scholar 

  60. Kris-Etherton, P.M., Hecker, K.D., Bonanome, A., Coval, S.M., Binkoski, A.E., Hilpert, K.F., et al. (2002). Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 113(Suppl. 9B): 71S-88S.

    Article  PubMed  CAS  Google Scholar 

  61. Casper, R.F., Quesne, M., Rogers, I.M., Shirota, T., Jolivet, A., Milgrom, E., et al. (1999). Res veratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity. Mol. Pharmacol. 56(4): 784–790.

    PubMed  CAS  Google Scholar 

  62. Henry, E.C., Kende, A.S., Rucci, G., Totleben, M.J., Willey, J.J., Dertinger, S.D., et al. (1999). Flavone antagonists bind competitively with 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) to the aryl hydrocarbon receptor but inhibit nuclear uptake and transformation. Mol. Pharmacol. 55:716–725.

    PubMed  CAS  Google Scholar 

  63. Shertzer, H.G., Puga, A., Chang, C., Smith, P., Nebert, D.W., Setchell, K.D., et al. (1999). Inhibition of CYP1A1 enzyme activity in mouse hepatoma cell culture by soybean isoflavones. Chem. Biol. Interact. 123:31–49.

    Article  PubMed  CAS  Google Scholar 

  64. Gouedard, C., Barouki, R., and Morel, Y. (2004). Dietary polyphenols increase paraoxonase 1 gene expression by an aryl hydrocarbon receptor-dependent mechanism. Mol. Cell Biol. 24:5209–5222.

    Article  PubMed  CAS  Google Scholar 

  65. Hennig, B., Toborek, M., Bachas, L.G., and Suk, W.A. (2004). Emerging issues: nutritional awareness in environmental toxicology. J. Nutr. Biochem. 15:194–195.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Hennig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennig, B., Reiterer, G., Majkova, Z. et al. Modification of environmental toxicity by nutrients. Cardiovasc Toxicol 5, 153–160 (2005). https://doi.org/10.1385/CT:5:2:153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:5:2:153

Keywords

Navigation