Skip to main content
Log in

Bile acids are toxic for isolated cardiac mitochondria

A possible cause for Hepatic-derived cardiomyopathies?

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cholestasis and other liver diseases may affect the heart through the toxic effects of the retained bile acids on cardiac mitochondria, which could explain the origin of hepatic-derived cardiomyopathies.

The objective of this work was to test the hypothesis that bile acids are toxic to heart mitochondria for concentrations that are relevant for cholestasis.

Heart mitochondria were isolated from rat and subjected to incubation with selected bile acids (litocholic acid [LCA], deoxycholic acid [DCA], chenodeoxycholic acid [CDCA], glycochenodeoxycholic acid [GCDC], taurodeoxycholic acid [CDCA], and glycoursodeoxycholic acid [GUDC]).

We observed that the most toxic bile acids were also the most lipophilic ones (LCA, DCA, and CDCA), inducing a decrease on state 3 respiration, respiratory control ratio, and membrane potential and causing the induction of the mitochondrial permeability transition. GUDC was the bile acid with lower indexes of toxicity on isolated heart mitochondria.

The results of this research indicate that attoxicologically relevant concentrations, most bile acids (mainly the most lipophilic) alter mitochondrial bioenergetics. The impairment of cardiac mitochondrial function may be an important cause for the observed cardiac alterations during cholestasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greim, H., Trulzch, D., Czygan, P., Rudick, J. Hutterer, F., Schaffner, F., and Popper, H. (1972). Mechanisms of cholestasis. 6. Bile salts in human livers with or without biliary obstruction. Gastroenterology 63:846–850.

    PubMed  CAS  Google Scholar 

  2. Shivaram, K.N., Winklhofer-Roob, B.M., Straka, M.S., Devereaux, M.W., Everson, G., Mierau, G.W., and Sokol, R.J. (1998). The effect of idebenone, a coenzyme analogue, on hydrophobic bile acid toxicity to isolated rat hepatocytes and hepatic mitochondria. Free Rad. Biol. Med. 25: 480–492.

    Article  PubMed  CAS  Google Scholar 

  3. Sokol, R.J., McKim, J.M., Goff, M.C., Ruyle, S.Z., Devereaux, M.W., Han, D., et al. (1998). Vitamin E reduces oxidant injury to mitochondria and the hepatotoxicity of taurochemodeoxycholic acid in the rat. Gastroenterology 114:164–174.

    Article  PubMed  CAS  Google Scholar 

  4. Rodrigues, C.M.P. and Steer, C.J. (2000). Mitochondrial membrane perturbations in cholestasis. J. Hepatol. 32: 135–141.

    Article  PubMed  CAS  Google Scholar 

  5. Krahenbuhl, S., Talos, C., Fischer, S., and Reichen, J. (1994). Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondria. Hepatology 19:471–479.

    PubMed  CAS  Google Scholar 

  6. Guldutuna, S., Zimmer, G., Leuschner, M., Bhatti, S., Elze, A., Deisinger, B., et al. (1999). The effect of bile salts and calcium on isolated rat liver mitochondria. Biochim. Biophys. Acta 1453:396–406.

    PubMed  CAS  Google Scholar 

  7. Rolo, A.P., Oliveira, P.J., Moreno, A.J.M., and Palmeira, C.M. (2000). Bile acids affect liver mitochondrial bioenergetics: possible relevance for cholestasis therapy. Toxicol. Sci. 57:177–185.

    Article  PubMed  CAS  Google Scholar 

  8. Zoratti, M. and Szabò, I. (1995). The mitochondrial permeability transition. Biochim. Biophys. Acta 1241:139–176.

    PubMed  Google Scholar 

  9. Kowaltowski, A.J., Castilho, R.F., and Vercesi, A.E. (2201). Mitochondrial permeability transition and oxidative stress. FEBS Lett. 495:12–15.

    Article  Google Scholar 

  10. Kroemer, G. and Reed, J.C. (2000). Mitochondrial control of cell death. Nature Med. 6:513–519.

    Article  PubMed  CAS  Google Scholar 

  11. Gores, G.J., Miyoshi, H., Botla, R., Aguilar, H.I., and Bronk, S.F. (1998). Induction of the mitochondrial permeability transition as a mechanism of liver injury during cholestasis: a potential role for mitochondrial proteases. Biochim. Biophys. Acta 1366:167–175.

    Article  PubMed  CAS  Google Scholar 

  12. Yerushalmi, B., Dahl, R., Devereaux, M.W., Gumpricht, E., and Sokol, R.J. (2001). Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology 33: 616–626.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, S.S. and Bomzon, A. (1990). The heart in liver disease, in: Cardiovascular Complications of Liver Disease (Bomzon, A. and Blendis, L.M., eds.) CRC, Boca Raton, FL: pp. 81–102.

    Google Scholar 

  14. Moller, S. and Henriksen, J.H. (2002). Cirrhotic cardiomyopathy: a pathophysiological review of circulatory dysfunction in liver disease. Heart 87:9–15.

    Article  PubMed  CAS  Google Scholar 

  15. Gazawi, H., Ljubuncic, P., Cogan, U., Hochgraff, E., Ben-Shachar, D., and Bomzon, A. (2000). The effects of bile acids on β-adrenoceptors, fluidity, and the extent of lipid peroxidation in rat cardiac membranes. Biochem. Pharmacol. 59:1623–1628.

    Article  PubMed  CAS  Google Scholar 

  16. Williamson, C., Gorelik, J., Eaton, B.M., Lab, M., de Swiet, M., and Korchev, Y. (2001). The bile acid taaurocholate impairs rat cardiomyocyte function: a proposed mechanism for intra-uterine fetal death in obstetric cholestasis. Clin. Sci. 100:363–369.

    Article  PubMed  CAS  Google Scholar 

  17. Rolo, A.P., Oliveira, P.J., Seiça, R., Santos, M.S., Moreno, A.J., and Palmeira, C.M. (2002). Improved efficiency of hepatic mitochondrial function in rats with cholestasis induced by an acute dose of alfa-naphtylisothiocyanate. Toxicol. Appl. Pharmacol. 182:20–26.

    Article  PubMed  CAS  Google Scholar 

  18. Rolo, A.P., Oliveira, P.J., Seiça, R., Santos, M.S., Moreno, A.J., and Palmeira, C.M. (2002). Disruption of mitochondrial calcium homeostasis after chronic α-naphthylisothiocyanate administration: relevance for cholestasis. J. Investig. Med. 50:193–200.

    PubMed  CAS  Google Scholar 

  19. Oliveira, P.J., Rolo, A.P., Seiça, R., Santos, M.S., Palmeira, C.M., and Moreno, A.J. (2003a). Reduction in cardiac mitochondrial calcium loading capacity is observable during α-naphylisothiocyanate-induced acute cholestasis: a clue for hepatic-derived cardiomyopathies? Biochim. Biophys. Acta 1637:39–45.

    PubMed  CAS  Google Scholar 

  20. Oliveira, P.J., Rolo, A.P., Seica, R., Santos, M.S., Palmeira, C.M., and Moreno, A.J. (2003b). Cardiac mitochondrial calcium loading capacity is severely affected after chronic cholestasis in Wistar rats. J. Invest. Med. 51:86–94.

    CAS  Google Scholar 

  21. Fischer, S., Beuers, U., Spengler, U., Zwiebel, F.M., and Koebe, H.-G. (1996). Hepatic levels of bile acids in endstage chronic cholestatic liver disease. Clin. Chim. Acta 251:173–186.

    Article  PubMed  CAS  Google Scholar 

  22. (No authors listed) (1996). Principles of Laboratory Animal Care. NIH publication No. 85-23. National Institutes of Health, Bethesda, MD.

  23. Oliveira, P.J., Santos, D.L., and Moreno, A.J.M. (2000). Carvedilol inhibits the exogenous NADH dehydrogenase in rat heart mitochondria. Arch. Biochem. Biophys. 374: 279–285.

    Article  PubMed  CAS  Google Scholar 

  24. Kamo, N., Muratsugu, M., Hongoh, R., and Kobatake, Y. (1979). Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J. Membrane Biol. 49:105–121.

    Article  CAS  Google Scholar 

  25. Broekemeier, K.M., Dempsey, M.E., and Pfeiffer, D.R. (1989). Cyclosporin A is a potent inhibitor of the inner membrane mitochondrial transition in liver mitochondria. J. Biol. Chem. 264:7826–7830.

    PubMed  CAS  Google Scholar 

  26. Makino, I., Nakagawa, S., and Mashimo, K. (1969). Conjugated and unconjugated serum bile acid levels in patients with hepatobiliary diseases Gastroenterology 56:1033–1039.

    PubMed  CAS  Google Scholar 

  27. Ostrow, J.D. (1993). Metabolism of bile salts in cholestasis in humans, in Hepatic Transport and Bile Secretion: Physiology and Pathophysiology (Tavoloni, N. and Berk, P.D., eds.), Raven, New York: pp. 673–712.

    Google Scholar 

  28. Bartholomew, T.C., Summerfield, J.A., Billing, B.H., and Lawson, A.M. (1982). Bile acid profiles of human serum and skin interstitial fluid and their relationship to pruritus studied by gas chromatography-mass spectrometry. Clin. Sci. 63:65–73.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, M., Coxito, P.M., Sardão, V.A. et al. Bile acids are toxic for isolated cardiac mitochondria. Cardiovasc Toxicol 5, 63–73 (2005). https://doi.org/10.1385/CT:5:1:063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:5:1:063

Key Words

Navigation