Skip to main content
Log in

Cardiac myofibril formation is not affected by modification of both N- and C-termini of sarcomeric tropomyosin

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Although the role of tropomyosin is well-defined in striated muscle, the precise mechanism of how tropomyosin functions is still unclear. It has been shown that extension of either N- or C-terminal ends of sarcomeric tropomyosin do not affect cardiac myofibrillogenesis, but it is not known whether simultaneous extension of both ends affects the process. For studying structural/functional relationships of sarcomeric tropomyosin, we have chosen the Ambystoma mexicanum because cardiac mutant hearts are deficient in sarcomeric tropomyosin. In this study, we have made an expression construct, pEGFP. TPM4α.E-L-FLAG, that, on transfection into normal and mutant axolotl hearts in organ culture, expresses GFP. TPM4α.E-L-FLAG fusion protein in which both the N- and C-termini of TPM4α are being extended. TPM4α is one of the three tropomyosins expressed in normal axolotl hearts. Both confocal and electron microscopic analyses show that this modified sarcomeric tropomyosin can form organized myofibrils in axolotl hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lees-Miller, J.P. and Helfman, D.M. (1991). The molecular basis of tropomyosin diversity. Bioessays 13:429–437.

    Article  PubMed  CAS  Google Scholar 

  2. Perry, S.V. (2001). Vertebrate tropomyosin: distribution, properties and function. J. Muscle Res. Cell Motil. 22:5–49.

    Article  PubMed  CAS  Google Scholar 

  3. Lemanski, L.F. (1973). Morphology of developing heart in cardiac lethal mutant Mexican axolotls. Ambystoma mexicanum. Dev. Biol. 33:312–333.

    Article  PubMed  CAS  Google Scholar 

  4. Lemanski, L.F. (1979). Role of tropomyosin in actin filament formation in embryonic salamander heart cells. J. Cell Biol. 82:227–238.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang, C., Meng, F., Huang, X.P., Zajdel, R., Lemanski, S.L., Foster, D., et al. (2004). Downregulation of N1 gene expression inhibits the initial heart beating and heart development in axolotls. Tissue Cell 36:71–81.

    Article  PubMed  CAS  Google Scholar 

  6. Zajdel, R.W., McLean M.D., Lemanski, S.L., Muthuchamy, M., Wieczorek, D.F., Lemanski, L.F., et al. (1998). Ectopic expression of tropomyosin promotes myofibrill-zogenesis in mutant axolotl hearts. Dev. Dyn. 213:412–420.

    Article  PubMed  CAS  Google Scholar 

  7. Zajdel, R.W., Sanger, J.M., Denz, C.R., Lee, S., Dube, S., Poiesz, B.J., et al. (2002). A novel striated muscle tropomyosin incorporated into organized myofibrils of cardiomyocytes in cell and organ culture. FEBS Lett. 520:35–39.

    Article  PubMed  CAS  Google Scholar 

  8. Zadjel, R.W., Choudhury, A., Dube, S., Mehta, S., and Dube, D.K. (2000). Transfection of anti-sense oligonucleotide into whole hearts using cationic liposomes. Focus (Gibco BRL). 22:28–30.

    Google Scholar 

  9. Lemanski, L.F., Nakatsugawa, M., Bhatia, R., Erginel-Unaltuna, N., Spinner, B., and Dube, D.K. (1996). Characterization of an RNA which promotes myofibrillogenesis in embryonic cardiac mutant axolotl hearts. Biochem. Biophys. Res. Commun. 229:974–981.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang, C., Dube, D.K., Huang, X., Zajdel, R.W., Bhatia, R., Foster, D., et al. (2003). A point mutation in bioactive RNA results in the failure of mutant heart correction in Mexican axolotls. Anat. Embryol. (Berl.) 206:495–506.

    CAS  Google Scholar 

  11. Luque, E.A., Spinner, B.J., Dube, S., Dube, D.K., and Lemanski, L.F. (1997). Differential expression of a novel isoform of alpha-tropomyosin in cardiac and skeletal muscle of the Mexican axolotl. Gene 185:175–185.

    Article  PubMed  CAS  Google Scholar 

  12. Spinner, B.J., Zajdel, R.W., McLean, M.D., Denz, C.R., Dube, S., Mehta, S., et al. (2002). Characterization of a TM4 type tropomyosin that is essential for myofibrillogenesis and contractile activity in embryonic heart of the Mexican axolotl. J. Cell. Biochem. 85:747–761.

    Article  PubMed  CAS  Google Scholar 

  13. Zot, H.G., Guth, K., and Potter, J.D. (1986). Fast skeletal muscle skinned fibers and myofibrils reconstituted with N-terminal fluorescent analogues of troponin C. J. Biol. Chem. 261:15883–15890.

    PubMed  CAS  Google Scholar 

  14. Palm, T., Greenfield, N.J., and Hitchock-DeGregori, S.E. (2003). Tropomyosin ends determine the stability and functionality of overlap and troponin T complex. Biophys. J. 84:3181–3189.

    Article  PubMed  CAS  Google Scholar 

  15. Metzger, J.M., Michele, D.E., Rust, E.M., Borton, A.R., and Westfall, M.V. (2003). Sarcomeric thin filament regulatory isoforms. J. Biol. Chem. 278:13118–13123.

    Article  PubMed  CAS  Google Scholar 

  16. Bordzilovskaya, N.P., Detlaff, T.A., Duhon, S.T., and Malacinski, G.M. (1989). Developmental stage series of axolotl embryos, in Developmental Biology of the Axolotl (Armstrong, J.B. and Malacinski, G.M., eds.), Oxford University Press, Oxford, pp. 201–219.

    Google Scholar 

  17. Lin, J.J.-C., Helfman, D.M., Hughes, S.H., and Chou, C-S. (1985). Tropomyosin isoforms in chicken embryo fibroblasts. Purification, characterization, and changes in Rous sarcoma virus-transformed cells. J. Cell Biol. 100:692–703.

    Article  PubMed  CAS  Google Scholar 

  18. Gimona, M., Watakabe, A., and Helfman, D.M. (1995). Specificity of dimer formation in tropomyosins: influence of alternatively splied exons on homodimer and heterodimer assembly. Proc. Natl. Sci. Acad. USA 92:9776–9780.

    Article  CAS  Google Scholar 

  19. Muthuchamy, M., Pieples, K., Rethinasamy, P., Hoit, B., Grupp, I.L., Boivin, G.P., et al. (1999). Mouse model of a familial hypertrophic cardiomyopathy mutation in α-tropomyosin manifests cardiac dysfunction. Circ. Res. 85: 47–56.

    PubMed  CAS  Google Scholar 

  20. Bottinelli, R., Coviello, D.A., Redwood, C.S., Pellegrino, M.A., Maron, B.J., Spirito, P., et al. (1997). A mutant tropomyosin that causes hypertrophic cardiomyopathy is expressed in vivo and associated with an increased calcium sensitivity. Circ. Res. 82:106–115.

    Google Scholar 

  21. Martson, S.B. and Redwood, C.S. (2003). Modulation of thin filament activation by breakdown or isoform switiching of thin filament proteins physiological and pathological implications. Circ. Res. 93:1170–1178.

    Article  CAS  Google Scholar 

  22. Maron, B.J., Shirani, J., Poliac, L.C., Mathenge, R., Roberts, W.C., and Mueller, F.O. (1996). Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 276:199–204.

    Article  PubMed  CAS  Google Scholar 

  23. McLachlan, A.D. and Stewart, M. (1975). Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J. Mol. Biol. 98:293–304.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak K. Dube.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narshi, A., Denz, C.R., Nakatsugawa, M. et al. Cardiac myofibril formation is not affected by modification of both N- and C-termini of sarcomeric tropomyosin. Cardiovasc Toxicol 5, 1–8 (2005). https://doi.org/10.1385/CT:5:1:001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:5:1:001

Key words

Navigation