Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of the pulmonary vasculature involving endothelial and vascular smooth muscle cell (VSMC) proliferation, vasoconstriction, right ventricular hypertrophy, and eventually, right heart failure and death. PAH occurs 1000-fold more frequently in HIV patients than in the general population. Although conventional HIV therapy with nucleoside reverse transcriptase inhibitors (NRTIs) leads to regression of PAH, highly active antiretroviral therapy (HAART; two NRTI plus a protease inhibitor) increases the incidence of HIV-associated, PAH as much as twofold. Although there are relatively few models for PAH, previous reports indicate the disease can be initiated by endothelial injury and release of the mitogen endothelin-1 (ET-1). ET-1, in turn, stimulates VSMC proliferation. To determine whether HAART induces endothelial injury and release of cytokines like ET-1, we treated human umbilical vein endothelial cells with micromolar amounts of AZT (3′-azido-3′-deoxythymidine), the protease inhibitor indinavir, or AZT plus indinavir, and measured cell viability, mitochondrial function, and ET-1 release. Both AZT and indinavir induced marked decreases in cellular oxygen uptake, as well as increases in ET-1 release. Although the drugs had no apparent effect on proliferation in VSMCs alone, in cocultures of VSMCs plus endothelial cells, the drugs increased proliferation of both endothelial cells and VSMCs. Finally, when cocultures of endothelial cells and VSMCs were treated with BQ-123 and BQ-788, selective antagonists for ETA and ETB receptors respectively, drug-induced proliferation of both VSMCs and endothelial cells was attenuated. These data thus suggest that HIV drug cocktails may exacerbate preexisting HIV-associated PAH by inducing endothelial mitochondrial dysfunction, in turn stimulating the release of ET-1, and ultimately, vascular cell proliferation.
This is a preview of subscription content, access via your institution.
References
Sitbon, O., Humbert, M., and Simonneau, G. (2002). Primary pulmonary hypertension: current therapy. Prog. Cardiovasc. Dis. 45:115–128.
Barbaro, G., Fisher, S. D., Giancaspro, G., and Lipshultz, S.E. (2001). HIV-associated cardiovascular complications: a new challenge for emergency physicians. Am. J. Emerg. Med. 19:566–574.
Barbaro, G., Fisher, S.D., and Lipshultz, S.E. (2001). Pathogenesis of HIV-associated cardiovascular complications. Lancet Infect. Dis. 1:115–124.
Mehta, N.J., Khan, I.A., Mehta, R.N., and Sepkowitz, D.A. (2000). HIV-related pulmonary hypertension: analytic review of 131 cases. Chest 118:1133–1141.
Himelman, R.B., Dohrmann, M., Goodman, P., Schiller, N.B., Starksen, N.F., Warnock, M., et al. (1989). Severe pulmonary hypertension and cor pulmonale in the acquired immunodeficiency syndrome. Am. J. Cardiol. 64:1396–1399.
Goldsmith, G.H. Jr., Baily, R.G., Brettler, D.B., Davidson, W.R. Jr., Ballard, J.O., Driscol, T.E., et al. (1988). Primary pulmonary hypertension in patients with classic hemophilia. Ann. Intern. Med. 108:797–799.
Speich, R., Jenni, R., Opravil, M., and Jaccard, R. (2001). Regression of HIV-associated pulmonary arterial hypertension and long-term survival during antiretroviral therapy. Swiss. Med. Wkly. 131:663–665.
Mette, S.A., Palevsky, H.I., Pietra, G. G., Williams, T.M., Bruder, E., Prestipino, A.J., et al. (1992). Primary pulmonary hypertension in association with human immunodeficiency virus infection. A possible viral etiology for some forms of hypertensive pulmonary arteriopathy. Am. Rev. Respir. Dis. 145:1196–1200.
Humbert, M. (1998). Platelet-derived growth factor expression in primary pulmonary hypertension: comparison of HIV seropositive and HIV seronegative patients. Eur. Respir. J. 11:554–559.
Barbaro, G. and Lipshultz, S.E. (2001). Pathogenesis of HIV-associated cardiomyopathy. Ann. NY Acad. Sci. 946:57–81.
Pellicelli, A.M., Palmieri, F., Cicalini, S., and Petrosillo, N. (2001). Pathogenesis of HIV-related pulmonary hypertension. Ann. NY Acad. Sci. 946:82–94.
Ehrenreich, H.P., Rieckmann, F., Sinowatz, F., Weich, K.A., Arthur, L.O., Goebel, F.D., et al. (1993). Potent stimulation of monocytic endothelin-1 production by HIV-1 glycoprotein. J. Immunol. 150:4601–4609.
Rerkpattanapipat, P.N., Wongpraparut, L.E., Jacobs, L.E., Jacobs, L.E., and Kotler, M.N. (2000). Cardiac manifestations of acquired immunodeficiency syndrome. Arch. Intern. Med. 160:602–608.
Pugliese, A., Isnardi, D., Saini, A., Scarabelli, T., Raddino, R., and Torre, D. (2000). Impact of highly active antiretroviral therapy in HIV-positive patients with cardiac involvement. J. Infect. 40:282–284.
Coplan, N.L., Shimony, R.Y., Ioachim, H.L., Wilentz, J.R., Posner, D.H., Lipschitz, A., et al. (1990). Primary pulmonary hypertension associated with human immunodeficiency viral infection. Am. J. Med. 89:96–99.
Nagaoka, T., Muramatsu, M., Sato, K., McMurtry, I., Oka, M., and Fukuchi, Y. (2001). Mild hypoxia causes severe pulmonary hypertension in fawn-hooded but not in Tester Moriyama rats. Respir. Physiol. 127:53–60.
Blumberg, F.C., Lorenz, C., Wolf, K., Sandner, P., Riegger, G.A., and Pfeifer, M. (2002). Increased pulmonary prostacyclin synthesis in rats with chronic hypoxic pulmonary hypertension. Cardiovasc. Res. 55:171–177.
Zamora, M.R., Stelzner, T.J., Webb, S., Panos, R.J., Ruff, L.J., and Dempsey, E.C. (1996). Overexpression of endothelin-1 and enhanced growth of pulmonary artery smooth muscle cells from fawn-hooded rats. Am. J. Physiol. 270 (1 Pt 1):L101-L109.
De Nucci, G., Thomas, R., D'Orleans-Juste, P., Antunes, E., Walder, C., Warner, T.D., et al. (1988). Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc. Natl. Acad. Sci. USA 85:9797–9800.
Hasunuma, K., Rodman, D.M., O'Brien, R.F., and McMurtry, I.F. (1990). Endothelin 1 causes pulmonary vasodilation in rats. Am. J. Physiol. Heart Circ. Physiol. 259:H48-H54.
Ivy, D.D., McMurtry, I.F., Yanagisawa, M., Gariepy, C.E., Le Cras, T.D., Gebb, et al. (2001). Endothelin B receptor deficiency potentiates ET-1 and hypoxic pulmonary vasoconstriction. Am. J. Physiol. Cell Mol. Physiol. 280:L1040-L1048.
Yuki, K., Miyauchi, T., Kakinuma, Y., Murakoshi, N., Suzuki, T., Hayashi, J., et al. (2000). Mitochondrial dysfunction increases expression of endothelin-1 and induces apoptosis through caspase-3 activation in rat cardiomyocytes in vitro. J. Cardiovasc. Pharmacol. 36(5 Suppl 1):S205-S208.
Schiffren, E.L. (1998). Endothelin: role in hypertension. Biol. Res. 31:199–208.
Warner, T.D. (1999). Relationships between the endothelin and nitric oxide pathways. Clin. Exp. Pharmacol. Physiol. 26:247–252.
Kvietys, P.R. and Granger, D.N. (1997). Endothelial cell monolayers as a tool for studying microvascular pathophysiology. Am. J. Physiol. 273:G1189-G1199.
Yoshida, N., Granger, D.N., Anderson, D.C., Rothlein, R., Lane, C., and Kvietys, P.R. (1992). Anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 262:H1891-H1898.
Morshed, K.M., Jain, S.K., and McMartin, K.E. (1994). Acute toxicity of propylene glycol: an assessment using cultured proximal tubule cells of human origin. Fundam. Appl. Toxicol. 23:38–43.
McMartin, K.E. and Cenac, T.A. (2000). Toxicity of ethylene glycol metabolites in normal human kidney cells. Ann. NY Acad. Sci. 919:315–317.
Dugas, T.R., Kanz, M.F., Hebert, V.Y., Hennard, K.L., Liu, H., Santa Cruz, V., et al. (2004). Vascular medial hyperplasia following chronic, intermittent exposure to 4,4′-methylenedianiline. Cardiovasc. Toxicol. 4:85–96.
Dugas, T.R., Jones, B.C., Mifflin, R.C., Santa Cruz, V., Boor, P.J., and Kanz, M.F. (2002). Vascular smooth muscle cell proliferation following chronic, intermittent exposure to 4,4′-methylenedianiline. Toxicol. Sci. 66(1-S):288.
Huong, P.L., Kolk, A.H., Eggelte, T.A., Verstijnen, C.P., Gilis, H., and Hendriks, J.T. (1991). Measurement of antigen specific lymphocyte proliferation using 5-bromodeoxyuridine incorporation. An easy and low cost alternative to radioactive thymidine incorporation. J. Immunol. Methods 140:243–248.
Shamoto-Nagai, M., Maruyama, W., Kato, Y., Isobe, K., Tanaka, M., Naoi, M., et al. (2003). An inhibitor of mitochondrial complex I, rotenone, inactivates proteasome by oxidative modification and induces aggregation of oxidized proteins in SH-SY5Y cells. J. Neurosci. Res. 74:589–597.
Hurley, J.V. and Jago, M.V. (1975). Pulmonary oedema in rats given dehydromonocrotaline: a topographic and electron-microscope study. J. Pathol. 117:23–32.
Rubin, L.J. (1997). Primary pulmonary hypertension. N. Engl. J. Med. 336:111–117.
Shimokawa, H. (1998). Endothelial dysfunction in hypertension. J. Atheroscl. Thromb. 4:118–127.
Nabel, E.G. (1991). Biology of the impaired endothelium. Am. J. Cardiol. 68:6C-8C.
Liu, Z., Wildhirt, S.M., Weismuller, S., Schultze, C., Conrad, N., and Reichart, B. (1998). Nitric oxide and endothelin in the development of cardiac allograft vasculopathy. Potential targets for therapeutic interventions. Atherosclerosis 140:1–14.
Gaine, S.P. and Rubin, L.J. (1998). Primary pulmonary hypertension. Lancet 352:719–725.
Chi, D., Henry, J., Kelley, J., Thorpe, R., Smith, J.K., and Krishnaswamy, G. (2000). The effects of HIV infection on endothelial function. Endothelium 7:223–242.
Zamora, M.A., Dempsey, E.C., Walchak, S.J., and Stelzner, T.J. (1993). BQ123, an ETA receptor antagonist, inhibits endothelin-1 mediated proliferation of human pulmonary artery smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 9:429–433.
Veyssier-Belot, C. and Cacoub, P. (1999). Role of endothelial and smooth muscle cells in the physiopathology and treatment management of pulmonary hypertension. Cardiovasc. Res. 44:274–282.
Solas, C., Basso, S., Poizot-Martin, I., Ravaux, I., Gallais, H., Gastaut, J.A., et al. (2002). High indinavir Cmin is associated with higher toxicity in patients on indinavir-ritonavir 800/100 mg twice-daily regimen. J. Acquir. Immune Defic. Syndr. 29:374–377.
Cremieux, A.C., Katlama, C., Gillotin, C., Demarles, D., Yuen, G.J., and Raffi, F. (2001). A comparison of the steady-state pharmacokinetics and safety of abacavir, lamivudine, and zidovudine taken as a triple combination tablet and as abacavir plus a lamivudine-zidovudine double combination tablet by HIV-linfected adults. Pharmacotherapy 21:424–430.
Yuhki, K.I., Miyauchi, T., Kakinuma, Y., Murakoshi, N., Maeda, S., Goto, K., et al. (2001). Endothelin-1 production is enhanced by rotenone, a mitochondrial complex I inhibitor, in cultured rat cardiomyocytes. J. Cardiovasc. Pharmacol. 38:850–858.
Jankov, R.P., Belcastro, R., Ovcina, E., Lee, J., Massaeli, H., Lye, S.J., et al. (2002). Thromboxane A(2) receptors mediate pulmonary hypertension in 60% oxygen-exposed newborn rats by a cyclooxygenase-independent mechanism. Am. J. Respir. Crit. Care Med. 166:208–214.
Benbrik, E., Chariot, P., Bonavaud, S., Ammi-Said, M., Frisdal, E., Rey, C., et al. (1997). Cellular and mitochondrial toxicity of zidovudine (AZT) didanosine (ddl) and zalcitabine (ddC) on cultured human muscle cells. J. Neurol. Sci. 149:19–25.
Brown, G.C. and Cooper, C.E. (1994). Nanomolar concentrations of NO reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 356:295–298.
Brown, G.C. and Borutaite, V. (2002). Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free. Radic. Biol. Med. 33:1440–1450.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hebert, V.Y., Crenshaw, B.L., Romanoff, R.L. et al. Effects of HIV drug combinations on endothelin-1 and vascular cell proliferation. Cardiovasc Toxicol 4, 117–131 (2004). https://doi.org/10.1385/CT:4:2:117
Issue Date:
DOI: https://doi.org/10.1385/CT:4:2:117
Key Words
- Vascular smooth muscle cells
- endothelial cells
- endothelin-1
- proliferation
- 3′-azido-3′-deoxythymidine
- indinavir