Skip to main content

Effects of HIV drug combinations on endothelin-1 and vascular cell proliferation

Abstract

Pulmonary arterial hypertension (PAH) is a progressive disease of the pulmonary vasculature involving endothelial and vascular smooth muscle cell (VSMC) proliferation, vasoconstriction, right ventricular hypertrophy, and eventually, right heart failure and death. PAH occurs 1000-fold more frequently in HIV patients than in the general population. Although conventional HIV therapy with nucleoside reverse transcriptase inhibitors (NRTIs) leads to regression of PAH, highly active antiretroviral therapy (HAART; two NRTI plus a protease inhibitor) increases the incidence of HIV-associated, PAH as much as twofold. Although there are relatively few models for PAH, previous reports indicate the disease can be initiated by endothelial injury and release of the mitogen endothelin-1 (ET-1). ET-1, in turn, stimulates VSMC proliferation. To determine whether HAART induces endothelial injury and release of cytokines like ET-1, we treated human umbilical vein endothelial cells with micromolar amounts of AZT (3′-azido-3′-deoxythymidine), the protease inhibitor indinavir, or AZT plus indinavir, and measured cell viability, mitochondrial function, and ET-1 release. Both AZT and indinavir induced marked decreases in cellular oxygen uptake, as well as increases in ET-1 release. Although the drugs had no apparent effect on proliferation in VSMCs alone, in cocultures of VSMCs plus endothelial cells, the drugs increased proliferation of both endothelial cells and VSMCs. Finally, when cocultures of endothelial cells and VSMCs were treated with BQ-123 and BQ-788, selective antagonists for ETA and ETB receptors respectively, drug-induced proliferation of both VSMCs and endothelial cells was attenuated. These data thus suggest that HIV drug cocktails may exacerbate preexisting HIV-associated PAH by inducing endothelial mitochondrial dysfunction, in turn stimulating the release of ET-1, and ultimately, vascular cell proliferation.

This is a preview of subscription content, access via your institution.

References

  1. Sitbon, O., Humbert, M., and Simonneau, G. (2002). Primary pulmonary hypertension: current therapy. Prog. Cardiovasc. Dis. 45:115–128.

    Article  PubMed  CAS  Google Scholar 

  2. Barbaro, G., Fisher, S. D., Giancaspro, G., and Lipshultz, S.E. (2001). HIV-associated cardiovascular complications: a new challenge for emergency physicians. Am. J. Emerg. Med. 19:566–574.

    Article  PubMed  CAS  Google Scholar 

  3. Barbaro, G., Fisher, S.D., and Lipshultz, S.E. (2001). Pathogenesis of HIV-associated cardiovascular complications. Lancet Infect. Dis. 1:115–124.

    Article  PubMed  CAS  Google Scholar 

  4. Mehta, N.J., Khan, I.A., Mehta, R.N., and Sepkowitz, D.A. (2000). HIV-related pulmonary hypertension: analytic review of 131 cases. Chest 118:1133–1141.

    Article  PubMed  CAS  Google Scholar 

  5. Himelman, R.B., Dohrmann, M., Goodman, P., Schiller, N.B., Starksen, N.F., Warnock, M., et al. (1989). Severe pulmonary hypertension and cor pulmonale in the acquired immunodeficiency syndrome. Am. J. Cardiol. 64:1396–1399.

    Article  PubMed  CAS  Google Scholar 

  6. Goldsmith, G.H. Jr., Baily, R.G., Brettler, D.B., Davidson, W.R. Jr., Ballard, J.O., Driscol, T.E., et al. (1988). Primary pulmonary hypertension in patients with classic hemophilia. Ann. Intern. Med. 108:797–799.

    PubMed  Google Scholar 

  7. Speich, R., Jenni, R., Opravil, M., and Jaccard, R. (2001). Regression of HIV-associated pulmonary arterial hypertension and long-term survival during antiretroviral therapy. Swiss. Med. Wkly. 131:663–665.

    PubMed  CAS  Google Scholar 

  8. Mette, S.A., Palevsky, H.I., Pietra, G. G., Williams, T.M., Bruder, E., Prestipino, A.J., et al. (1992). Primary pulmonary hypertension in association with human immunodeficiency virus infection. A possible viral etiology for some forms of hypertensive pulmonary arteriopathy. Am. Rev. Respir. Dis. 145:1196–1200.

    PubMed  CAS  Google Scholar 

  9. Humbert, M. (1998). Platelet-derived growth factor expression in primary pulmonary hypertension: comparison of HIV seropositive and HIV seronegative patients. Eur. Respir. J. 11:554–559.

    PubMed  CAS  Google Scholar 

  10. Barbaro, G. and Lipshultz, S.E. (2001). Pathogenesis of HIV-associated cardiomyopathy. Ann. NY Acad. Sci. 946:57–81.

    Article  PubMed  CAS  Google Scholar 

  11. Pellicelli, A.M., Palmieri, F., Cicalini, S., and Petrosillo, N. (2001). Pathogenesis of HIV-related pulmonary hypertension. Ann. NY Acad. Sci. 946:82–94.

    Article  PubMed  CAS  Google Scholar 

  12. Ehrenreich, H.P., Rieckmann, F., Sinowatz, F., Weich, K.A., Arthur, L.O., Goebel, F.D., et al. (1993). Potent stimulation of monocytic endothelin-1 production by HIV-1 glycoprotein. J. Immunol. 150:4601–4609.

    PubMed  CAS  Google Scholar 

  13. Rerkpattanapipat, P.N., Wongpraparut, L.E., Jacobs, L.E., Jacobs, L.E., and Kotler, M.N. (2000). Cardiac manifestations of acquired immunodeficiency syndrome. Arch. Intern. Med. 160:602–608.

    Article  PubMed  CAS  Google Scholar 

  14. Pugliese, A., Isnardi, D., Saini, A., Scarabelli, T., Raddino, R., and Torre, D. (2000). Impact of highly active antiretroviral therapy in HIV-positive patients with cardiac involvement. J. Infect. 40:282–284.

    Article  PubMed  CAS  Google Scholar 

  15. Coplan, N.L., Shimony, R.Y., Ioachim, H.L., Wilentz, J.R., Posner, D.H., Lipschitz, A., et al. (1990). Primary pulmonary hypertension associated with human immunodeficiency viral infection. Am. J. Med. 89:96–99.

    Article  PubMed  CAS  Google Scholar 

  16. Nagaoka, T., Muramatsu, M., Sato, K., McMurtry, I., Oka, M., and Fukuchi, Y. (2001). Mild hypoxia causes severe pulmonary hypertension in fawn-hooded but not in Tester Moriyama rats. Respir. Physiol. 127:53–60.

    Article  PubMed  CAS  Google Scholar 

  17. Blumberg, F.C., Lorenz, C., Wolf, K., Sandner, P., Riegger, G.A., and Pfeifer, M. (2002). Increased pulmonary prostacyclin synthesis in rats with chronic hypoxic pulmonary hypertension. Cardiovasc. Res. 55:171–177.

    Article  PubMed  CAS  Google Scholar 

  18. Zamora, M.R., Stelzner, T.J., Webb, S., Panos, R.J., Ruff, L.J., and Dempsey, E.C. (1996). Overexpression of endothelin-1 and enhanced growth of pulmonary artery smooth muscle cells from fawn-hooded rats. Am. J. Physiol. 270 (1 Pt 1):L101-L109.

    PubMed  CAS  Google Scholar 

  19. De Nucci, G., Thomas, R., D'Orleans-Juste, P., Antunes, E., Walder, C., Warner, T.D., et al. (1988). Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc. Natl. Acad. Sci. USA 85:9797–9800.

    Article  PubMed  Google Scholar 

  20. Hasunuma, K., Rodman, D.M., O'Brien, R.F., and McMurtry, I.F. (1990). Endothelin 1 causes pulmonary vasodilation in rats. Am. J. Physiol. Heart Circ. Physiol. 259:H48-H54.

    CAS  Google Scholar 

  21. Ivy, D.D., McMurtry, I.F., Yanagisawa, M., Gariepy, C.E., Le Cras, T.D., Gebb, et al. (2001). Endothelin B receptor deficiency potentiates ET-1 and hypoxic pulmonary vasoconstriction. Am. J. Physiol. Cell Mol. Physiol. 280:L1040-L1048.

    CAS  Google Scholar 

  22. Yuki, K., Miyauchi, T., Kakinuma, Y., Murakoshi, N., Suzuki, T., Hayashi, J., et al. (2000). Mitochondrial dysfunction increases expression of endothelin-1 and induces apoptosis through caspase-3 activation in rat cardiomyocytes in vitro. J. Cardiovasc. Pharmacol. 36(5 Suppl 1):S205-S208.

    PubMed  CAS  Google Scholar 

  23. Schiffren, E.L. (1998). Endothelin: role in hypertension. Biol. Res. 31:199–208.

    Google Scholar 

  24. Warner, T.D. (1999). Relationships between the endothelin and nitric oxide pathways. Clin. Exp. Pharmacol. Physiol. 26:247–252.

    Article  PubMed  CAS  Google Scholar 

  25. Kvietys, P.R. and Granger, D.N. (1997). Endothelial cell monolayers as a tool for studying microvascular pathophysiology. Am. J. Physiol. 273:G1189-G1199.

    PubMed  CAS  Google Scholar 

  26. Yoshida, N., Granger, D.N., Anderson, D.C., Rothlein, R., Lane, C., and Kvietys, P.R. (1992). Anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 262:H1891-H1898.

    CAS  Google Scholar 

  27. Morshed, K.M., Jain, S.K., and McMartin, K.E. (1994). Acute toxicity of propylene glycol: an assessment using cultured proximal tubule cells of human origin. Fundam. Appl. Toxicol. 23:38–43.

    Article  PubMed  CAS  Google Scholar 

  28. McMartin, K.E. and Cenac, T.A. (2000). Toxicity of ethylene glycol metabolites in normal human kidney cells. Ann. NY Acad. Sci. 919:315–317.

    Article  PubMed  CAS  Google Scholar 

  29. Dugas, T.R., Kanz, M.F., Hebert, V.Y., Hennard, K.L., Liu, H., Santa Cruz, V., et al. (2004). Vascular medial hyperplasia following chronic, intermittent exposure to 4,4′-methylenedianiline. Cardiovasc. Toxicol. 4:85–96.

    Article  PubMed  CAS  Google Scholar 

  30. Dugas, T.R., Jones, B.C., Mifflin, R.C., Santa Cruz, V., Boor, P.J., and Kanz, M.F. (2002). Vascular smooth muscle cell proliferation following chronic, intermittent exposure to 4,4′-methylenedianiline. Toxicol. Sci. 66(1-S):288.

    Google Scholar 

  31. Huong, P.L., Kolk, A.H., Eggelte, T.A., Verstijnen, C.P., Gilis, H., and Hendriks, J.T. (1991). Measurement of antigen specific lymphocyte proliferation using 5-bromodeoxyuridine incorporation. An easy and low cost alternative to radioactive thymidine incorporation. J. Immunol. Methods 140:243–248.

    Article  PubMed  CAS  Google Scholar 

  32. Shamoto-Nagai, M., Maruyama, W., Kato, Y., Isobe, K., Tanaka, M., Naoi, M., et al. (2003). An inhibitor of mitochondrial complex I, rotenone, inactivates proteasome by oxidative modification and induces aggregation of oxidized proteins in SH-SY5Y cells. J. Neurosci. Res. 74:589–597.

    Article  PubMed  CAS  Google Scholar 

  33. Hurley, J.V. and Jago, M.V. (1975). Pulmonary oedema in rats given dehydromonocrotaline: a topographic and electron-microscope study. J. Pathol. 117:23–32.

    Article  PubMed  CAS  Google Scholar 

  34. Rubin, L.J. (1997). Primary pulmonary hypertension. N. Engl. J. Med. 336:111–117.

    Article  PubMed  CAS  Google Scholar 

  35. Shimokawa, H. (1998). Endothelial dysfunction in hypertension. J. Atheroscl. Thromb. 4:118–127.

    CAS  Google Scholar 

  36. Nabel, E.G. (1991). Biology of the impaired endothelium. Am. J. Cardiol. 68:6C-8C.

    Article  PubMed  CAS  Google Scholar 

  37. Liu, Z., Wildhirt, S.M., Weismuller, S., Schultze, C., Conrad, N., and Reichart, B. (1998). Nitric oxide and endothelin in the development of cardiac allograft vasculopathy. Potential targets for therapeutic interventions. Atherosclerosis 140:1–14.

    Article  PubMed  CAS  Google Scholar 

  38. Gaine, S.P. and Rubin, L.J. (1998). Primary pulmonary hypertension. Lancet 352:719–725.

    Article  PubMed  CAS  Google Scholar 

  39. Chi, D., Henry, J., Kelley, J., Thorpe, R., Smith, J.K., and Krishnaswamy, G. (2000). The effects of HIV infection on endothelial function. Endothelium 7:223–242.

    PubMed  CAS  Google Scholar 

  40. Zamora, M.A., Dempsey, E.C., Walchak, S.J., and Stelzner, T.J. (1993). BQ123, an ETA receptor antagonist, inhibits endothelin-1 mediated proliferation of human pulmonary artery smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 9:429–433.

    PubMed  CAS  Google Scholar 

  41. Veyssier-Belot, C. and Cacoub, P. (1999). Role of endothelial and smooth muscle cells in the physiopathology and treatment management of pulmonary hypertension. Cardiovasc. Res. 44:274–282.

    Article  PubMed  CAS  Google Scholar 

  42. Solas, C., Basso, S., Poizot-Martin, I., Ravaux, I., Gallais, H., Gastaut, J.A., et al. (2002). High indinavir Cmin is associated with higher toxicity in patients on indinavir-ritonavir 800/100 mg twice-daily regimen. J. Acquir. Immune Defic. Syndr. 29:374–377.

    PubMed  CAS  Google Scholar 

  43. Cremieux, A.C., Katlama, C., Gillotin, C., Demarles, D., Yuen, G.J., and Raffi, F. (2001). A comparison of the steady-state pharmacokinetics and safety of abacavir, lamivudine, and zidovudine taken as a triple combination tablet and as abacavir plus a lamivudine-zidovudine double combination tablet by HIV-linfected adults. Pharmacotherapy 21:424–430.

    Article  PubMed  CAS  Google Scholar 

  44. Yuhki, K.I., Miyauchi, T., Kakinuma, Y., Murakoshi, N., Maeda, S., Goto, K., et al. (2001). Endothelin-1 production is enhanced by rotenone, a mitochondrial complex I inhibitor, in cultured rat cardiomyocytes. J. Cardiovasc. Pharmacol. 38:850–858.

    Article  PubMed  CAS  Google Scholar 

  45. Jankov, R.P., Belcastro, R., Ovcina, E., Lee, J., Massaeli, H., Lye, S.J., et al. (2002). Thromboxane A(2) receptors mediate pulmonary hypertension in 60% oxygen-exposed newborn rats by a cyclooxygenase-independent mechanism. Am. J. Respir. Crit. Care Med. 166:208–214.

    Article  PubMed  Google Scholar 

  46. Benbrik, E., Chariot, P., Bonavaud, S., Ammi-Said, M., Frisdal, E., Rey, C., et al. (1997). Cellular and mitochondrial toxicity of zidovudine (AZT) didanosine (ddl) and zalcitabine (ddC) on cultured human muscle cells. J. Neurol. Sci. 149:19–25.

    Article  PubMed  CAS  Google Scholar 

  47. Brown, G.C. and Cooper, C.E. (1994). Nanomolar concentrations of NO reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 356:295–298.

    Article  PubMed  CAS  Google Scholar 

  48. Brown, G.C. and Borutaite, V. (2002). Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free. Radic. Biol. Med. 33:1440–1450.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammy R. Dugas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hebert, V.Y., Crenshaw, B.L., Romanoff, R.L. et al. Effects of HIV drug combinations on endothelin-1 and vascular cell proliferation. Cardiovasc Toxicol 4, 117–131 (2004). https://doi.org/10.1385/CT:4:2:117

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:4:2:117

Key Words

  • Vascular smooth muscle cells
  • endothelial cells
  • endothelin-1
  • proliferation
  • 3′-azido-3′-deoxythymidine
  • indinavir