Skip to main content

Vascular medial hyperplasia following chronic, intermittent exposure to 4,4′-methylenedianiline

Abstract

4,4′-Methylenedianiline (DAPM) is an aromatic amine used in the synthesis of polyurethanes and epoxy resins. Acute exposure to DAPM produces hepatobiliary toxicity in humans as well as animal models. However, the toxic effects of intermittent DAPM exposure have not been explored. We treated male and female rats with 25 mg DAPM/kg or vehicle once per week for 17–22 wk. Though concentric fibrosis around bile ducts of the liver was noted, vascular medial hyperplasia was also prominent. Morphometric analysis of histologic sections revealed that in male rats, vessel wall area increased relative to lumen area in hepatic arteries by 22 wk. However, in female rats, wall areas of both hepatic and pulmonary arteries increased relative to lumen area by 17 wk. In both male and female rats, increased wall thickness was localized to the medial layer; no intimal changes were noted. In vitro treatment of vascular smooth muscle cells (VSMC) with 25–100 μM DAPM resulted in increased DNA synthesis and VSMC proliferation. To test whether the observed alterations in cell cycle control involved VSMC-mediated metabolism of DAPM to electrophilic intermediates, cells were treated with DAPM or DAPM plus 50 μM N-acetylcysteine (NAC). Coincubation with NAC afforded dramatic protection against DAPM-induced VSMC proliferation. Though DAPM had no appreciable effect on levels of reduced glutathione, oxidized glutathione, or oxidant production, DAPM increased glutathione-S-transferase activity in VSMC. These data indicate that DAPM can initiate VSMC proliferation, possibly via VSMC-mediated metabolism of DAPM to reactive intermediates.

This is a preview of subscription content, access via your institution.

References

  1. Dempsey, D.J., Phaneuf, M.D., Bide, M.J., Szycher, M., Quist, W.C., and Logerfo, F.W. (1998). Synthesis of a novel small diameter polyurethane vascular graft with reactive binding sites. ASAIO J. 44:M506-M510.

    PubMed  CAS  Google Scholar 

  2. Feng, L.J. and Amini, S.B. (1999). Analysis of risk factors associated with rupture of silicone gel breast implants. Plast. Reconstr. Surg. 104:955–963.

    Article  PubMed  CAS  Google Scholar 

  3. IARC. (1986). IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans. Vol. 39, Lyon, France, pp. 347–365.

    Google Scholar 

  4. Moore, W.M. (1978). Methylenedianiline, in Kirkothmer Encyclopedia of Chemical Technology (Mark, H.F., Othmer, D.F., Overberger, C.G., and Seaborg, G.T., eds.), Wiley, New York, pp. 338–348.

    Google Scholar 

  5. Brookes, L.J., Neale, J.M., and Pieroni, D.R. (1979). Acute myocardiopathy following tripathway exposure to methyl-enedianiline. JAMA 242:1527–1528

    Article  Google Scholar 

  6. Kopelman, H., Scheuer, P.J., and Williams, R. (1966). The liver lesion of the Epping jaundice. Q. J. Med. 35:553–565.

    Google Scholar 

  7. Kanz, M.F., Gunasena, G.H., Kaphalia, L., Hammond, D.K., and Syed, Y.A. (1998). A minimally toxic dose of methylene dianiline injures biliary epithelial cells in rats. Toxicol. Appl. Pharmacol. 150:414–426.

    Article  PubMed  CAS  Google Scholar 

  8. Dalene, M., Jakobsson, K., Rannug, A., Skarping, G., and Hagmar, L. (1996). MDA in plasma as a biomarker of exposure to pyrolysed MDI-based polyurethane: correlations with estimated cumulative dose and geonotype for N-acetylation. Int. Arch. Occup. Environ. Health 68:165–169.

    Article  PubMed  CAS  Google Scholar 

  9. Kautiainen, A., Wachtmeister, C.A., and Ehrenberg, L. (1998). Characterization of hemoglobin adducts from a 4, 4′-methylenedianiline metabolite evidently produced by peroxidative oxidation in vivo. Chem. Res. Toxicol. 11: 614–621.

    Article  PubMed  CAS  Google Scholar 

  10. Do Luu, H.M. and Hutter, J.C. (2000). Pharmacokinetic modeling of 4,4′-methylenedianiline released from reused polyurethane dialyzer potting materials. J. Biomed. Mater. Res. 53:276–286.

    Article  PubMed  CAS  Google Scholar 

  11. Shintani, H. and Nakamura, A. (1989). Analysis of a carcinogen, 4,4′-methylenedianiline, from thermosetting polyurethane during sterilization. J. Anal. Toxicol. 13:354–357.

    PubMed  CAS  Google Scholar 

  12. Brennan, M.B. (1999). Knitting textile chemistry to medicine. Chem. Eng. News 77:33–36.

    Google Scholar 

  13. Wilkinson, S.L. (1998). Seeking clarity on breast implants. Chem. Eng. News 76:53–54.

    Google Scholar 

  14. Chamley, J.H., Campbell, G.R., McConnell, J.D., and Groschel-Stewart, U. (1977). Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell. Tissue Res. 177:503–522.

    PubMed  CAS  Google Scholar 

  15. Huong, P.L., Kolk, A.H., Eggelte, T.A., Verstijnen, C.P., Gilis, H., and Henddriks, J.T. (1991). Measurement of antigen specific lymphocyte proliferation using 5-bromo-deoxyuridine incorporation. An easy and low cost alternative to radioactive thymidine incorporation. J. Immunol. Methods 140:243–248.

    Article  PubMed  CAS  Google Scholar 

  16. Tietze, F. (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Biochem 27:248–254.

    Article  Google Scholar 

  17. O’Donovan, D.J., Katkin, J.P., Tamura, T., Smith, C.V., and Welty, S.E. (2000). Attenuation of hyperoxia-induced growth inhibition in H441 cells by gene transfer of mitochondrially targeted glutathione reductase. Am. J. Respir. Cell. Mol., Biol. 22:732–738.

    CAS  Google Scholar 

  18. Royall, J.A. and Ischiropoulos, H. (1993). Evaluation of 2′7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophys 302:338–355.

    Article  Google Scholar 

  19. Ischiropoulos, H., Gow, A., Thom, S.R., Kooy, N.W., Royall, J.A., and Crow, J.P. (1999). Detection of reactive nitrogen species using 2,7-dichlorodihydrofluoresce in and dihydrorhodamine 123. Methods Enzymol. 301: 367–373.

    Article  PubMed  CAS  Google Scholar 

  20. Cao, A., Hardej, D., Trombetta, L.D., Trush, M.A., and Li, Y. (2003). Induction of cellular glutathione and glutathione-S-transferase by 3H-1,2-dithiole-3-thione in rat aortic smooth muscle A10 cells: protection against acrolein-induced toxicity. Atherosclerosis 166:291–301.

    Article  PubMed  CAS  Google Scholar 

  21. Bailie, M.B., Mullaney, T.P., and Roth, R.A. (1993). Characterization of acute 4,4′-methylene dianiline hepatotoxicity in the rat. Environ. Health Perspect. 101:130–133.

    Article  PubMed  CAS  Google Scholar 

  22. Haber, M.M., Marboe, C.C., and Genoglio, J.J. Jr. (1991). Vasculitis in drug reactions and serum sickness, in Systemic Vascultides (Churg, A. and Churg, J., eds.), Igaku-Shoin, New York, pp. 305–325.

    Google Scholar 

  23. Drory, V.E. and Korczyn, A.D. (1993). Hypersensitivity vasculitis and systemic lupus erythematosus induced by anticonvulsants. Clin. Neuropharmacol. 16:19–29.

    Article  PubMed  CAS  Google Scholar 

  24. Mitchell, G.G., Magnusson, A.R., and Weiler, J.M. (1983). Cimetidine-induced cutaneous vasculitis. Am. J. Med. 75:875–876.

    Article  PubMed  CAS  Google Scholar 

  25. Jennette, J.C. and Falk, R.J. (1997). Small-vessel vasculitis. N. Engl. J. Med. 337:1512–1523.

    Article  PubMed  CAS  Google Scholar 

  26. Dugas, T.R., Santa Cruz, V., Liu, H., and Kanz, M.F. (2001). Evaluation of the gender differences in 4, 4′-methylenedianiline toxicity, distribution, and effects on biliary parameters. J. Toxicol. Environ. Health A 62: 467–483.

    Article  PubMed  CAS  Google Scholar 

  27. Cocker, J., Boobis, A.R., and Davies, D.S. (1988). Determination of the N-acetyl metabolites of 4,4′-methylene dianiline and 4,4′-methylene-bis(2-chloroaniline) in urine. Biomed. Environ. Mass Spectrom. 17:161–167.

    Article  PubMed  CAS  Google Scholar 

  28. Morgott, D.A., Weber, W.W., and Cornish, H.H. (1984). In vivo biotransformation of methylenedianiline (MDA) in the rat and rabbit. The Toxicologist 4:8.

    Google Scholar 

  29. Bailey, E., Brooks, A.G., Bird, I., Farmer, P.B., and Street, B. (1990). Monitoring exposure to 4,4′-methylenedianiline by the gas chromatography-mass spectrometry determination of adducts to hemoglobin. Anal. Biochem. 190: 176–181.

    Article  Google Scholar 

  30. Marnett, L.J. (1990). Prostaglandin synthase-mediated metabolism of carcinogens and a potential role for peroxyl radicals as reactive intermediates. Environ. Health Perspect. 88:5–12.

    Article  PubMed  CAS  Google Scholar 

  31. Zenser, T.V., Mattammal, M.B., Armbrecht, H.J., and Davis, B.B. (1980). Benzidine binding to nucleic acids mediated by the peroxidative activity of prostaglandin endoperoxide synthetase. Cancer Res. 40:2839–2845.

    PubMed  CAS  Google Scholar 

  32. Zhao, W., Parrish, A.R., and Ramos, K.S. (1998). Constitutive and inducible expression of cytochrome P450IA1 and P450IB1 in human vascular endothelial and smooth muscle cells. In Vitro Cell. Dev. Biol. Anim. 34:671–673.

    Article  PubMed  CAS  Google Scholar 

  33. Marnett, L.J., Reed, G.A., and Dennison, D.J. (1978). Prostaglandin synthetase dependent activation of 7,8-dihydro-7,8-dihydroxy-geno(a) pyrene to mutagenic derivativies. Biochem. Biophys. Res. Commun. 82:210–216.

    Article  PubMed  CAS  Google Scholar 

  34. Kim, H.-Y., Rhim, T., Choi, I., and Kim, S.-S. (2001). N-Acetylcysteine induces cell cycle arrest in hepatic stellate cells through its reducing activity. J. Biol. chem. 276: 40591–40598.

    Article  PubMed  CAS  Google Scholar 

  35. Sjodin, K., Nilsson, E., Hallberg, A., and Tunek, A. (1989). Metabolism of N-acetyl-L-cysteine: some structural requirements for the deacetylation and consequences for the oral bioavailability. Biochem. Pharmacol. 38:3981–3985.

    Article  PubMed  CAS  Google Scholar 

  36. Huxtable, R.J. (1990). Activation and pulmonary toxicity of pyrrolizidine alkaloids. Pharmacol. Ther. 47:371–389.

    Article  PubMed  CAS  Google Scholar 

  37. Lafranconi, W.M. and Huxtable, R.J. (1984). Hepatic metabolism and pulmonary toxicity of monocrotaline using isolated perfused liver and lung. Biochem. Pharmacol. 33: 2479–2484.

    Article  PubMed  CAS  Google Scholar 

  38. Estep, J.E., Lame, M.W., Morin, D., Jones, A.D., Wilson, D.W., and Segall, H.J. (1991). [14C] Monocrotaline kinetics and metabolism in the rat. Drug. Metab. Dispos. 19:135–139.

    PubMed  CAS  Google Scholar 

  39. Yost, G.S., Buckpitt, A.R., Roth, R.A., and McLemore, T.L. (1989). mechanisms of lung injury by systemically administered chemicals. Toxicol. Appl. Pharmacol. 101:179–195.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammy R. Dugas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dugas, T.R., Kanz, M.F., Hebert, V.Y. et al. Vascular medial hyperplasia following chronic, intermittent exposure to 4,4′-methylenedianiline. Cardiovasc Toxicol 4, 85–96 (2004). https://doi.org/10.1385/CT:4:1:85

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:4:1:85

Key Words

  • Methylenedianiline
  • glutathione
  • vascular smooth muscle cells
  • proliferation
  • glutathione-S-transferase