Skip to main content
Log in

Translation of PDGF cardioprotective pathways

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Vascular function in the aging heart is impaired and may underlie the increased morbidity and mortality associated with ischemic heart disease in older individuals. This vascular dysfunction is due, in part, to impairment of plateletderived growth factor (PDGF)-mediated pathways in senescent cardiac microvascular endothelial cells. Restoration of these pathways by intramyocardial injection of growth factor transiently rescues senescent cardiac angiogenesis. Longer-term reconstitution can be achieved experimentally by transplantation of young bone marrow-derived stem cells to promote senescent cardiac angiogenic function in the murine host. Moreover, enhancement of PDGF pathways is cardioprotective, markedly reducing the extent of myocardial injury following coronary occlusion. The clinical translation of these findings for treatment of ischemic heart diseases must overcome the limitation of the proatherosclerotic actions of PDGF, as well as the generation of autologous stem/precursor cell approaches, for the aging cardiovascular system. Strategies targeting growth factor and/or stem-cell homing to gene products downstream of PDGF in the cardiac microvasculature may provide positive feedback loops to enhance cardiac angiogenesis and protection from myocardial infarction and may offer a foundation for developing novel therapies for the prevention and treatment of cardiovascular disease associated with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Institutes of Health. Morbidity and Mortality. Chart Book on Cardiovascular, Lung, and Blood Diseases. National Institutes of Health, National Heart, Lung, and Blood Institute, Washington, DC, 2000.

    Google Scholar 

  2. American heart Association, Americans and Cardiovascular Disease Biostatistical Fact Sheet—Older Americans and Cardiovascular Disease. American Heart Association, Dallas, TX, 2001.

    Google Scholar 

  3. Edelberg, J. M., Lee, S. H., Kaur, M., Tang, L., Feirt, N. M., McCabe, S., et al. (2002). Platelet-derived growth factorab limits the extent of myocardial infarction in a rat model: feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation 105:608–613.

    Article  PubMed  CAS  Google Scholar 

  4. Senni, M., Tribouilloy, C., Rodeheffer, R., Jacobsen, S., Evans, J., Bailey, K., and Redfield, M. (1999). Congestive heart failure in the community—tends in incidence and survival in a 10 year period. Arch. Intern. Med. 159:29–34.

    Article  PubMed  CAS  Google Scholar 

  5. Simons, L., McCallum, J., Friedlander, Y., and Simons, J. (1998). Risk factors for ischemic stroke—Dubbo study of the elderly. Stroke 29:1341–1346.

    PubMed  CAS  Google Scholar 

  6. Paul, S., O'Gara, P., Mahjoub, Z., DiSalvo, T., O'Donnell, C., Newell, A., et al. (1996). Geriatric patients with acute myocardial infarction: cardiac risk factor profiles, presentation, thrombolysis, coronary interventions, and prognosis. Am. Heart J. 131:710–715.

    Article  PubMed  CAS  Google Scholar 

  7. Rich, M., Bosner, M., Chung, M., Shen, J., and McKenzie, J. (1992). Is age an independent predictor of early and late mortality in patients with acute myocardial infarction. Am. J. Med. 92:7–13.

    Article  PubMed  CAS  Google Scholar 

  8. Barbagallo, M., Resnick, L., Dominguez, L., and Licata, G. (1997). Diabetes mellitus, hypertension and ageing: the ionic hypothesis of ageing and cardiovascular-metabolic disease. Diabetes Metab. 23:281–294.

    PubMed  CAS  Google Scholar 

  9. Aguirre, F., McMahon, R., Mueller, H., Kleiman, N., Kern, M., Desvigne-Nickens, P., et al. (1994). Impact of age on clinical outcome and post-lytic management strategies in patients treated with intravenous thrombolytic therapy—Results from the TIMI II study. Circulation 90:78–86.

    PubMed  CAS  Google Scholar 

  10. Hirai, T., Fujita, M., Nakajima, H., Asanoi, H., Yamanishi, K., Ohno, A., and Sasayama, S. (1989). Importance of collateral circulation for prevention of left ventricular aneurysm formation in acute myocardial infarction. Circulation 79:791–796.

    PubMed  CAS  Google Scholar 

  11. Ejiri, M., Fujita, M., Sakai, O., Miwa, K., Asanoi, H., and Sasayama, S. (1990). Development of collateral circulation after acute myocardial infarction: its role in preserving left ventricular function. J. Cardiol. 20:31–37.

    PubMed  CAS  Google Scholar 

  12. Kodama, K., Kusuoka, H., Sakai, A., Adachi, T., Hasegawa, S., Ueda, Y., et al. (1996). Collateral channels that develop after an acute myocardial infarction prevent subsequent left ventricular dilation. J. Am. Coll. Cardiol. 27:1133–1139.

    Article  PubMed  CAS  Google Scholar 

  13. Banerjee, A. K., Madan Mohan, S. K., Ching, G. W., and Singh, S. P. (1993). Functional significance of coronary collateral vessels in patients with previous ‘Q’ wave infarction: relation to aneurysm, left ventricular end diastolic pressure and ejection fraction. Int. J. Cardiol. 38:263–271.

    Article  PubMed  CAS  Google Scholar 

  14. Hudlicka, O. and Brown, M. D. (1996). Postnatal growth of the heart and its blood vessels. J. Vasc. Res. 33:266–287.

    PubMed  CAS  Google Scholar 

  15. Isoyama, S. (1994). Hypertension and age-related changes in the heart. Implications for drug therapy. Drugs Aging 5: 102–115.

    PubMed  CAS  Google Scholar 

  16. Tomanek, R. J., Aydelotte, M. R., and Butters, C. A. (1990). Late-onset renal hypertension in old rats alters myocardial microvessels. Am. J. Physiol. 259:H1681-H1687.

    PubMed  CAS  Google Scholar 

  17. Anversa, P., Li, P., Sonnenblick, E. H., and Olivetti, G. (1994). Effects of aging on quantitative structural properties of coronary vasculature and microvasculature in rats. Am. J. Physiol. 267:H1062-H1073.

    PubMed  CAS  Google Scholar 

  18. Azhar, G., Gao, W., Liu, L., and Wei, J. Y. (1999). Ischemia-reperfusion in the adult mouse heart influence of age. Exp. Gerontol. 34:699–714.

    Article  PubMed  CAS  Google Scholar 

  19. Rakusan, K. and Nagai, J. (1994). Morphometry of arterioles and capillaries in hearts of senescent mice. Cardiovasc. Res. 28:969–972.

    PubMed  CAS  Google Scholar 

  20. Rivard, A., Fabre, J. E., Silver, M., Chen, D., Murohara, T., Kearney, M., et al. (1999). Age-dependent impairment of angiogenesis. Circulation 99:111–120.

    PubMed  CAS  Google Scholar 

  21. Reed, M. J., Corsa, A. C., Kudravi, S. A., McCormick, R. S., and Arthur, W. T. (2000). A deficit in collagenase activity contributes to impaired migration of aged microvascular endothelial cells. J. Cell. Biochem. 77:116–126.

    Article  PubMed  CAS  Google Scholar 

  22. Marinho, A., Soares, R., Ferro, J., Lacerda, M., and Schmitt, F. (1997). Angiogenesis in breast cancer is related to age but not to other prognostic parameters. Pathol. Res. Pract. 193:267–273.

    PubMed  CAS  Google Scholar 

  23. Pili, R., Guo, Y., Chang, J., Nakanashi, H., Martin, G., and Passaniti, A. (1994). Altered angiogenesis underlying age-dependent changes in tumor growth. J. Natl. Cancer Inst. 86:1303–1314.

    Article  PubMed  CAS  Google Scholar 

  24. Tomanek, R. J. (1990). Response of the coronary vasculature to myocardial hypertrophy. J. Am. Coll. Cardiol. 15: 528–533.

    Article  PubMed  CAS  Google Scholar 

  25. Tomanek, R. J., Aydelotte, M. R., and Torry, R. J. (1991). Remodeling of coronary vessels during aging in purebred beagles. Circ. Res. 69:1068–1074.

    PubMed  CAS  Google Scholar 

  26. Hachamovitch, R., Wicker, P., Capasso, J. M., and Anversa, P. (1989). Alterations of coronary blood flow and reserve with aging in Fischer 344 rats. Am. J. Physiol. 256:H66-H73.

    PubMed  CAS  Google Scholar 

  27. Czernin, J., Muller, P., Chan, S., Brunken, R. C., Porenta, G., Krivokapich, J., et al. (1993). Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 88:62–69.

    PubMed  CAS  Google Scholar 

  28. Melidonis, A., Tournis, S., Kouvaras, G., Baltaretsou, E., Hadanis, S., Hajissavas, I., et al. (1999). Comparison of coronary collateral circulation in diabetic and non-diabetic patients suffering from coronary artery disease. Clin. Cardiol. 22:465–471.

    Article  PubMed  CAS  Google Scholar 

  29. Edelberg, J. M., Arid, W. C., Wu, W., Rayburn, H., Mamuya, W. S., Mercola, M., and Rosenberg, R. D. (1998). PDGF mediates cardiac microvascular communication. J. Clin. Invest. 102:837–843.

    PubMed  CAS  Google Scholar 

  30. Ross, R., Raines, E. W., and Bowen-Pope, D. F. (1986). The biology of platelet-derived growth factor. Cell 46:155–169.

    Article  PubMed  CAS  Google Scholar 

  31. Sarzani, R., Arnaldi, G., Takasaki, I., Brecher, P., and Chobanian, A. V. (1991). Effects of hypertension and aging on platelet-derived growth factor and platelet-derived growth factor receptor expression in rat aorta and heart. Hypertension 18:III93–99.

    PubMed  CAS  Google Scholar 

  32. Aird, W. C., Edelberg, J. M., Weiler-Guettler, H., Simmons, W. W., Smith, T. W., and Rosenberg, R. D. (1997). Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microen vironment. J. Cell. Biol. 138:1117–1124.

    Article  PubMed  CAS  Google Scholar 

  33. Edelberg, I. M., Tang, L., Hattori, K., Lyden, D., and Rafii, S. (2002). Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circ. Res. 90:E89-E93.

    Article  PubMed  CAS  Google Scholar 

  34. Nilsson, J. (1993). Cytokines and smooth muscle cells in atherosclerosis. Cardiovasc. Res. 27:1184–1190.

    PubMed  CAS  Google Scholar 

  35. Heldin, C. H. and Westermark, B. (1999). Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79:1283–1316.

    PubMed  CAS  Google Scholar 

  36. Risau, W. (1995). Differentiation of endothelium. Faseb J. 9:926–933.

    PubMed  CAS  Google Scholar 

  37. Augustin, H. G., Kozian, D. H., and Johnson, R. C. (1994). Differentiation of endothelial cells: analysis of the constitutive and activated endothelial cell phenotypes. Bioessays 16:901–906.

    Article  PubMed  CAS  Google Scholar 

  38. Borsum, T., Hagen, I., Henriksen, T., and Carlander, B. (1982). Alterations in the protein composition and surface structure of human endothelial cells during growth in primary culture. Atherosclerosis 44:367–378.

    Article  PubMed  CAS  Google Scholar 

  39. de Bono, D. P. and Green, C. (1984). The adhesion of different cell types to cultured vascular endothelium: effects of culture density and age. Br. J. Exp. Pathol. 65:145–154.

    PubMed  Google Scholar 

  40. Pasqualini, R. and Ruoslahti, E. (1996). Organ targeting in vivo using phage display peptide libraries. Nature 380: 364–366.

    Article  PubMed  CAS  Google Scholar 

  41. Arap, W., Kolonin, M. G., Trepel, M., Lahdenranta, J., Cardo-Vila, M., Giordano, R. J., et al. (2002). Steps toward mapping the human vasculature by phage display. Nat. Med. 8: 121–127.

    Article  PubMed  CAS  Google Scholar 

  42. Pasqualini, R., Koivunen, E., Kain, R., Lahdenranta, J., Sakamoto, M., Stryhn, A., et al. (2000). Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60:722–727.

    PubMed  CAS  Google Scholar 

  43. Shipp, M. A. and Look, A. T. (1993). Hematopoietic differentiation antigens that are membrane-associated enzymes: cutting is the key!. Blood 82:1052–1070.

    PubMed  CAS  Google Scholar 

  44. Look, A. T., Ashmun, R. A., Shapiro, L. H., and Peiper, S. C. (1989). Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N. J. Clin. Invest. 83:1299–1307.

    PubMed  CAS  Google Scholar 

  45. Bussolino, F., Mantovani, A., and Persico, G. (1997). Molecular mechanisms of blood vessel formation. Trends Biochem. Sci. 22:251–256.

    Article  PubMed  CAS  Google Scholar 

  46. Zetter, B. R. (1998). Angiogenesis and tumor metastasis. Annu. Rev. Med. 49:407–424.

    Article  PubMed  CAS  Google Scholar 

  47. Bhagwat, S. V., Lahdenranta, J., Giordano, R., Arap, W., Pasqualini, R., and Shapiro, L. H. (2001). CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 97:652–659.

    Article  PubMed  CAS  Google Scholar 

  48. Li, R. K., Jia, Z. Q., Weisel, R. D., Mickle, D. A., Zhang, J., Mohabeer, M. K., et al. (1996). Cardiomyocyte transplantation improves heart function. Ann. Thorac. Surg. 62: 654–660.

    Article  PubMed  CAS  Google Scholar 

  49. Li, R. K., Jia, Z. Q., Weisel, R. D., Mickle, D. A., Choi, A., and Yau, T. M. (1999). Survival and function of bioengineered cardiac grafts. Circulation 100:II63–69.

    PubMed  CAS  Google Scholar 

  50. Scorsin, M., Marotte, F., Sabri, A., Le Dref, O., Demirag, M., Samuel, J. L., et al. (1996). Can grafted cardiomyocytes colonize peri-infarct myocardial areas?. Circulation 94: II337-II340.

    PubMed  CAS  Google Scholar 

  51. Soonpaa, M. H., Koh, G. Y., Klug, M. G., and Field, L. J. (1994). Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264:98–101.

    Article  PubMed  CAS  Google Scholar 

  52. Murry, C. E., Wiseman, R. W., Schwartz, S. M., and Hauschka, S. D. (1996). Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest. 98:2512–2523.

    PubMed  CAS  Google Scholar 

  53. Ferrari, G. and Mavilio, F. (2002). Myogenic stem cells from the bone marrow: a therapeutic alternative for muscular dystrophy?. Neuromusc. Disord. 12:S7.

    Article  Google Scholar 

  54. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., and McKercher, S. R. (2000). Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782.

    Article  PubMed  CAS  Google Scholar 

  55. Brazelton, T. R., Rossi, F. M., Keshet, G. I., and Blau, H. M. (2000). From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779.

    Article  PubMed  CAS  Google Scholar 

  56. Petersen, B. E., Bowen, W. C., Patrene, K. D., Mars, W. M., Sullivan, A. K., Murase, N., et al. (1999). Bone marrow as a potential source of hepatic oval cells. Science 284: 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  57. Quaini, F., Urbanek, K., Beltrami, A. P., Finato, N., Beltrami, C. A., Nadal-Ginard, B., et al. (2002). Chimerism of the transplanted heart. N. Engl. J. Med. 346:5–15.

    Article  PubMed  Google Scholar 

  58. Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J., Majesky, M. W., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107:1395–1402.

    Article  PubMed  CAS  Google Scholar 

  59. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705.

    Article  PubMed  CAS  Google Scholar 

  60. Tomita, S., Mickle, D. A., Weisel, R. D., Jia, Z. Q., Tumiati, L. C., Allidina, Y., et al. (2002). Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J. Thorac. Cardiovasc. Surg. 123:1132–1140.

    Article  PubMed  Google Scholar 

  61. Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA. 98:10344–10349.

    Article  PubMed  CAS  Google Scholar 

  62. Woldbaek, P. R., Hoen, I. B., Christensen, G., and Tonnedden, T. (2002). Gene expression of colony-stimulating factors and stem cell factor after myocardial infarction in the mouse. Acta Physiol. Scand. 175:173–181.

    Article  PubMed  CAS  Google Scholar 

  63. Iversen, P. O., Woldbaek, P. R., Tonnessen, T., and Christensen, G. (2002). Decreased hematopoiesis in bone marrow of mice with congestive heart failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282:R166-R172.

    PubMed  CAS  Google Scholar 

  64. Rivard, A., Berthou-Soulie, L., Principe, N., Kearney, M., Curry, C., Branellec, D., et al. (2002). Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity. J. Biol. Chem. 275:29643–29647.

    Article  Google Scholar 

  65. Vasa, M., Fichtlscherer, S., Aicher, A., Adler, K., Urbich, C., Martin, H., et al. (2001). Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 89:E1-E7.

    PubMed  CAS  Google Scholar 

  66. Reed, M. J. and Gallo, J. M. (2002). Cells designed to deliver anticancer drugs by apoptosis. Cancer Res. 62: 1382–1387.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay M. Edelberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edelberg, J.M., Cai, D. & Xaymardan, M. Translation of PDGF cardioprotective pathways. Cardiovasc Toxicol 3, 27–35 (2003). https://doi.org/10.1385/CT:3:1:27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:3:1:27

Key Words

Navigation