Skip to main content
Log in

Effect of aging on cardiac contractility in a rat model of chronic daunorubicin cardiotoxicity

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Because the risk of chronic anthracycline cardiotoxicity increases with age, the effect of chronic daunorubicin was compared in young (6–9 mo) and senescent (24–26 mo) Fischer 344 rats in cumulative doses of 12 or 18 mg/kg. Senescent rats treated using 18 mg/kg of daunorubicin did not survive because of daunorubicin toxicity. Rats were euthanized 1 wk after the last dose of daunorubicin and ex vivo studies of isometric cardiac contractile function were done in left ventricular trabeculae carneae. In senescent rats given 12 mg/kg of daunorubicin, it caused significant impairment of contractility (dS/dt at 15 cpm; p=0.001) that was not observed in either young adult group. In addition, the effect of 12 mg/kg of daunorubicin on contractility in senescent rats was significantly reduced compared to that in young rats administered 12 mg/kg of daunorubicin (p<0.001), although the effect was similar to that in young rats given 18 mg/kg of daunorubicin. In rats receiving 12 mg/kg of daunorubicin, there was an age-dependent effect of daunorubicin on rate-related contractility and on Ca2+-induced contractility. Daunorubicinol, but not daunorubicin, concentrations were increased in the senescent rat heart tissue. This suggests that chronic daunorubicin cardiotoxicity increases with age, at least partly resulting from sarcoplasmic reticulum dysfunction caused by increased anthracycline exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palmeri, S.T., Borrow, R.O., Myers, C.E., Seipp, C., Jenkins, J., Green, M.V., Bacharach, S.L., and Rosenberg, S.A. (1986). Prospective evaluation of doxorubicin cardiotoxicity by rest and exercise radionuclide angiography. Am. J. Cardiol. 58:607–613.

    Article  PubMed  CAS  Google Scholar 

  2. Von Hoff, D.D., Layard, M.W., Basa, P., Davis, H.L., Von Hoff, A.L., Rozenweig, M., and Muggia, F.M. (1979). Risk factors for doxorubicin-induced congestive heart failure. Ann. Intern. Med. 91:710–717.

    Google Scholar 

  3. Colombo, T., Donelli, M.G., Urso, R., Dallarda, S., Bartosek, I., and Guitani A. (1996). Doxorubicin toxicity and pharmacokinetics in old and young rats. Exp. Gerontol. 24:159–171.

    Article  Google Scholar 

  4. Cusack, B.J., Mushlin, P.S., Johnson, C.J., Vestal, R.E., and Olson, R.D. (1996). Aging increases the cardiotoxicity of daunorubicin and daunorubicinol in the rat. J. Gerontol. 51A:B376-B384.

    CAS  Google Scholar 

  5. Cusack, B.J., Young, S.P., Driskell, J., and Olson, R.D. (1993). Doxorubicin and doxorubicinol pharmacokinetics and tissue concentrations following bolus and injection and continuous infusion in the rabbit. Cancer Chemother. Pharmacol. 32:53–58.

    Article  PubMed  CAS  Google Scholar 

  6. Cusack, B.J., Young, S.P., and Olson, R.D. (1995). Daunorubicin and daunorubicinol pharmacokinetics in plasma and tissues in the rat. Cancer Chemother. Pharmacol. 35:213–218.

    Article  PubMed  CAS  Google Scholar 

  7. Cusack, B.J., Tesnohlidek, D.A., Loseke, V.L., Vestal, R.E., Brenner, D.E., and Olson, R.D. (1988). Effect of phenytoin on the pharmacokinetics of doxorubicin and doxorubicinol in the rabbit. Cancer Chemother. Pharmacol. 22:294–298.

    Article  PubMed  CAS  Google Scholar 

  8. Robert, J., Bui, N.B., and Vrignaud, P. (1987). Pharmaco-kinetics of doxorubicin in sarcoma patients. Eur. J. Clin. Pharmacol. 31:695–699.

    Article  PubMed  CAS  Google Scholar 

  9. Frampton, J.E., Harrison, S.M., Boyett, M.R., and Orchard, C.H. (1991). Ca and Na in rat myocytes showing different force-frequency relations. Am. J. Physiol. 262:C739-C750.

    Google Scholar 

  10. Mill, J.G., Vassalo, D.V., Leite, C.M., and Campagnaro, P. (1994). Influence of the sarcoplasmic reticulum on the inotropic responses of the rat myocardium resulting from changes in rate and rhythm. Braz. J. Med. Biol. Res. 27:1455–1465.

    PubMed  CAS  Google Scholar 

  11. Pérez, N.G., Hashimoto, K., McCune, S., Altschuld, R.A., and Marbán, E. (1999). Origin of contractile dysfunction in heart failure. Calcium versus myofilaments. Circulation 99:1077–1083.

    PubMed  Google Scholar 

  12. Näbauer, M., Callewaert, G., Cleemann, L., and Morad, M. (1989). Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244:800–803.

    Article  PubMed  Google Scholar 

  13. Burke, B.E., Gambliel, H., Olson, R.D., Bauer, F.K., and Cusack, B.J. (2000). Prevention by dexrazoxane of down-regulation of ryanodine receptor gene expression in anthracy-cline cardiomyopathy in the rat. Br. J. Pharmacol. 131:1–4.

    Article  PubMed  CAS  Google Scholar 

  14. Dodd, D.A., Atkinson, J.B., Olson, R.D., Buck, S., Cusack, B.J., Fleischer, S., et al. (1993). Doxorubicin cardiomy-opathy is associated with decrease in calcium release channel of the sarcoplasmic reticulum in a chronic rabbit model. J. Clin. Invest. 91:1697–1705.

    PubMed  CAS  Google Scholar 

  15. Bottone, A.E., Voest, E.E., and de Beer, E.L. (1998). Impairment of the actin-myosin interaction in permeabilized cardiac trabeculae after chronic doxorubicin treatment. Clin. Cancer Res. 4:1031–1037.

    PubMed  CAS  Google Scholar 

  16. Pessah, I.N., Schiedt, M.J., Shalaby, M.A., Mack, M., and Giri, S.N. (1992). Etiology of sarcoplasmic reticulum calcium release channel lesions in doxorubicin-induced cardiomyopathy. Toxicology 72:189–206.

    Article  PubMed  CAS  Google Scholar 

  17. Olson, R.D., Li, X., Palade, P., Shadle, S.E., Mushlin, P.S., Gambliel, H.A., et al. (2000). Sarcoplasmic reticulum calcium release is stimulated and inhibited by daunorubicin and daunorubicinol. Toxicol. Appl. Pharmacol. 169:168–176.

    Article  PubMed  CAS  Google Scholar 

  18. Nwankwoala, R.N. and West, W.L. (1988). Inhibition of alpha-tocopherol and calcium calmodulin-stimulated phosphodiesterase activity in vitro by anthracyclines. Clin. Exp. Pharmacol. Physiol. 15:805–814.

    PubMed  CAS  Google Scholar 

  19. Storm, G., van Hoesel, Q.G.C.M., de Groot, G., Kop, W., Steerenberg, P.A., and Hillen, F.C. (1989). A comparative study on the antitumor effect, cardiotoxicity and nephrotoxicity of doxorubicin given as a bolus, continuous infusion or entrapped in liposomes in the Lou/M Wsl rat. Cancer Chemother. Pharmacol. 24:341–348.

    Article  PubMed  CAS  Google Scholar 

  20. De Wildt, D.J., de Jong, Y., Hillen, F.C., Steerenberg, P.A., and van Hoesel, Q.G.C.M. (1985). Cardiovascular effects of doxorubicin-induced toxicity in the intact Lou/M Wsl rat and in isolated heart preparations. J. Pharmacol. Exp. Ther. 235:234–240.

    PubMed  Google Scholar 

  21. Nagami, K., Yoshikawa, T., Suzuki, M., Wainai, Y., Anzai, T., and Handa, S. (1997). Abnormal beta-adrenergic transmission signaling in rabbits with adriamycin-induced cardiomyopathy. Jpn. Circ. J. 61:249–255.

    Article  PubMed  CAS  Google Scholar 

  22. Nozawa, T., Igawa, A., Yoshida, N., Maeda, M., Inoue, M., Yamamura, Y., et al. (1998). Dual tracer assessment of coupling between cardiac sympathetic neuronal function and downregulation of beta-receptors during development of hypertensive heart failure of rats. Circulation 97:2359–2367.

    PubMed  CAS  Google Scholar 

  23. Van der Vijgh, W.J.F., Van Velzen, D., Van der Poort, J.S.E., Sclüper, H.M.M., Mross, K., Feijen, J., et al. (1988). Morphometric study of myocardial changes during doxorubicin-induced cardiomyopathy in mice. Eur. J. Cancer Clin. Oncol. 24:1603–1609.

    Article  PubMed  Google Scholar 

  24. Olson, H.M. and Capen, C.C. (1977). Subacute cardiotoxicity of adriamycin in the rat. Biochemical and ultrastructural investigations. Lab. Invest. 37:386–394.

    PubMed  CAS  Google Scholar 

  25. Willebrands, A.F., Ter Welle, H.F., and Tasseron, S.J.A. (1973). The effect of a high molar FFA/albumin ratio in the perfusion medium on rhythm and contractility of the isolated rat heart. J. Mol. Cell. Cardiol. 5:259–273.

    Article  CAS  Google Scholar 

  26. Siveski-Iliskovic, N., Kaul, N., and Singal, P.K. (1994). Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation 89:2829–2835.

    PubMed  CAS  Google Scholar 

  27. Iliskovic, N. and Singal, PK. (1997). Lipid lowering: an important factor in preventing adriamycin-induced heart failure. Am. J. Pathol. 150:727–734.

    PubMed  CAS  Google Scholar 

  28. Felesko, W., Mlynnarczuk, I., Balkowiec-Iskra, E.Z., Czaika, A., Switaj, T., Stoklosa, T., et al. (2000). Lovastatin potentiates antitumor activity and attenuates cardiotoxicity of doxorubicin in three tumor models in mice. Clin. Cancer Res. 6:2044–2052.

    Google Scholar 

  29. Bielack, S., Erttmann, R., Kempf-Bielack, B., and Winkler, K. (1996). Impact of scheduling on toxicity and clinical efficacy of doxorubicin: what do we know in the mid-nineties? Eur. J. Cancer 32A:1652–1660.

    Article  PubMed  CAS  Google Scholar 

  30. Cusack, B.J., Young, S.P., Vestal, R.E., and Olson, R.D. (1997). Age-related pharmacokinetics of daunorubicin and daunorubicinol following intravenous bolus daunorubicin administration in the rat. Cancer Chemother. Pharmacol. 39:505–512.

    Article  PubMed  CAS  Google Scholar 

  31. Boucek, R.J., Olson, R.D., Brenner, D.E., Ogunbunmi, E.M., Inui, M., and Fleischer, S. (1987). The major metabolite of doxorubicin is a potent inhibitor of membrane associated ion pumps. J. Biol. Chem. 262:15,851–15,856.

    CAS  Google Scholar 

  32. Olson, R.D., Mushlin, P.S., Brenner, D.E., et al. (1988). Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc. Natl. Acad. Sci. USA 85:3585–3589.

    Article  PubMed  CAS  Google Scholar 

  33. Minotti, G., Cavaliere, A.F., Mordente, A., et al. (1995). Secondary alcohol metabolites mediate iron delocalization in cytosolic fractions of myocardial biopsies exposed to anticancer anthracyclines. Novel linkage between anthracycline metabolism and iron-induced cardiotoxicity. J. Clin. Invest. 95:1595–1605.

    Article  PubMed  CAS  Google Scholar 

  34. Forrest, G.L., Gonzalez, B., Tseng, W., Li, X., and Mann J. (2000). Human carbonyl reductase overex pression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Res. 60:5158–5164.

    PubMed  CAS  Google Scholar 

  35. Gambliel, H.A., Burke, B.E., Cusack, B.J., Walsh, G.M., Zhang, Y.L., Mushlin, P.S., et al. (2002). Doxorubicin and C-13 deoxydoxorubicin effects on ryanodine receptor gene expression. Biochem. Biophys. Res. Commun. 291:433–438.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry J. Cusack M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cusack, B.J., Young, S.P., Gambliel, H. et al. Effect of aging on cardiac contractility in a rat model of chronic daunorubicin cardiotoxicity. Cardiovasc Toxicol 2, 99–109 (2002). https://doi.org/10.1385/CT:2:2:099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:2:2:099

Key Words

Navigation