Skip to main content
Log in

Regulation of mast cells by β-agonists

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

The human lung mast cell is known to be a critical effector cell in the mediation of asthma. Activation of the mast cell by allergens and other stimuli leads to the release and generation of a wide variety of autacoids that cause bronchoconstriction, promote inflammation, and may influence airway remodeling. Therefore, the stabilization of mast cells has obvious value in the prevention of asthma. Among the drugs used to treat asthma, only β-agonists are effective stabilizers of mast cells. Both short- and long-acting β-agonists are effective against mast cells, but there are differences between agonists regarding the extent of inhibitory activity attained. Consequently, the type of β-agonist prescribed influences the degree of mast cell stabilization possible. Despite the potential value of attenuating mast cell activity with β-agonists, this benefit may diminish with time because of the development of tolerance. Both short- and long-acting β-agonists can induce tolerance to mast cell stabilization, and generally, higher efficacy agonists tend to induce greater levels of tolerance; however, weaker agonists induce greater levels of tolerance than might be expected. Tolerance to the mast-cell-stabilizing effects of β-agonists may be an issue clinically, because this occurs more readily than tolerance to smooth muscle relaxation. This could lead to a situation in which β-agonists fail to prevent the release of mediators from mast cells but can still effectively relax airway smooth muscle. The continued ability to bronchodilate could mask the unfavorable consequences of unchecked mediator release from mast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holgate, S. T., Hardy, C., Robinson, C., Agius, R. M., and Howarth, P. H. (1986), The mast cell as a primary effector cell in the pathogenesis of asthma. J. Allergy Clin. Immunol. 79, 274–282.

    Article  Google Scholar 

  2. Bingham, C. O. and Austen, K. F. (2000), Mast-cell responses in the development of asthma. J. Allergy Clin. Immunol. 105, S527-S534.

    Article  PubMed  CAS  Google Scholar 

  3. Williams, C. M. M. and Galli, S. J. (2000), The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J. Allergy Clin. Immunol. 105, 847–859.

    Article  PubMed  CAS  Google Scholar 

  4. Holgate, S. T., Peters-Golden, M., Panettieri, R. A., and Henderson, W. R. (2003), Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function, and remodeling. J. Allergy Clin. Immunol. 111, S18-S36.

    Article  PubMed  CAS  Google Scholar 

  5. Reed, C. E. and Kita, H. (2004), The role of protease activation of inflammation in allergic respiratory diseases. J. Allergy Clin. Immunol. 114, 997–1008.

    Article  PubMed  CAS  Google Scholar 

  6. Elias, J. A., Zhou, Z., Chupp, G., and Homer, R. J. (1999), Airway remodeling in asthma. J. Clin. Invest. 104, 1001–1006.

    PubMed  CAS  Google Scholar 

  7. Sommerhoff, C. P. (2001), Mast cell tryptases and airway remodeling. Am. J. Respir. Crit. Care Med. 164, S52-S58.

    PubMed  CAS  Google Scholar 

  8. Brightling, C. J., Bradding, P., Symon, F. A., Holgate, S. T., Wardlaw, A. J., and Pavord, I. D. (2002), Mast-cell infiltration of airway smooth muscle in asthma. N. Eng. J. Med. 346, 1699–1705.

    Article  Google Scholar 

  9. Robinson, D. S. (2004), The role of the mast cell in asthma: induction of airway hyperresponsiveness by interaction with smooth muscle? J. Allergy Clin. Immunol. 114, 58–65.

    Article  PubMed  CAS  Google Scholar 

  10. Peachell, P. (2005), Targeting the mast cell in asthma. Curr. Opin. Pharmacol. 5, 251–256.

    Article  PubMed  CAS  Google Scholar 

  11. Waldeck, B. (2002), β-adrenoceptor agonists and asthma—100 years of development. Eur. J. Pharmacol. 445, 1–12.

    Article  PubMed  CAS  Google Scholar 

  12. O'Connor, B. J., Fuller, R. W., and Barnes, P. J. (1994), Non-bronchodilator effects of inhaled β2-agonists. Greater protection against adenosine monophosphate- than methacholine-induced bronchoconstriction in asthma. Am. J. Respir. Crit. Care Med. 150, 381–387.

    PubMed  Google Scholar 

  13. Lee, D. K. C., Gray, R. D., and Lipworth, B. J. (2003), Adenosine monophosphate bronchial provocation and the actions of asthma therapy. Clin. Exp. Allergy 33, 287–294.

    Article  PubMed  CAS  Google Scholar 

  14. Cushley, M. J. and Holgate, S. T. (1985), Adenosine-induced bronchoconstriction in asthma: role of mast cell mediator release. J. Allergy Clin. Immunol. 78, 272–278.

    Article  Google Scholar 

  15. Salpeter, S. R., Ormistor, T. M., and Salpeter, E. E. (2004), Meta-analysis: respiratory tolerance to regular β2-agonist use in patients with asthma. Ann. Intern. Med. 140, 802–813.

    PubMed  Google Scholar 

  16. Cockcroft, D. W., McParland, C. P., Britto, S. A., Swystun, V. A., and Rutherford, B. C. (1993), Regular inhaled salbutamol and airway responsiveness to allergen. Lancet 342, 833–837.

    Article  PubMed  CAS  Google Scholar 

  17. O'Connor, B. J., Aikman, S. L., and Barnes P. J. (1992), Tolerance to the nonbronchodilator effects of inhaled β2-agonists in asthma. N. Engl. J. Med. 327, 1204–1208.

    Article  PubMed  Google Scholar 

  18. Jokic, R., Swystun, V. A., Davis, B. E., and Cockcroft, D. W. (2001), Regular inhaled salbutamol. Effect on airway responsiveness to methacholine and adenosine 5′-monophosphate and tolerance to bronchoprotection. Chest 119, 370–375.

    Article  PubMed  CAS  Google Scholar 

  19. Swystun, V. A., Gordon, J. R., Davis, B., Zhang, X., and Cockcroft, D. W. (2000), Mast cell tryptase release and asthmatic responses to allergen increase with regular use of salbutamol. J. Allergy Clin. Immunol. 106, 57–64.

    Article  PubMed  CAS  Google Scholar 

  20. Schild, H. (1937), Histamine release in anaphylactic shock of isolated lungs of guinea pigs. Quart. J. Exp. Physiol. 26, 165–179.

    Google Scholar 

  21. Orange, R. P., Austen, W. G., and Austen, K. F. (1971), Immunological release of histamine and slow reacting substance of anaphylaxis from human lung. I. Modulation by agents influencing cellular levels of cyclic 3′5′-adenosine monophosphate. J. Exp. Med. 134, 136–148.

    PubMed  CAS  Google Scholar 

  22. Assem, E. S. K. and Schild, H. O. (1969), Beta-adrenergic receptors concerned with the anaphylactic mechanism. Int. Archs Allergy Appl. Immunol. 45, 62–69.

    Google Scholar 

  23. Butchers, P. R., Skidmore, I. F., Vardey, C. J., and Wheeldon, A. (1980), Characterisation of the receptor mediating the anti-anaphylactic effects of β-adrenoceptor agonists in human lung tissue in vitro. Br. J. Pharmacol. 17, 663–667.

    Google Scholar 

  24. Nials, A. T., Ball, D. I., Butchers, P. R., et al. (1994), Formoterol on airway smooth muscle and human lung mast cells—a comparison with salbutamol and salmeterol. Eur. J. Pharmacol. 251, 127–135.

    Article  PubMed  CAS  Google Scholar 

  25. Lau, H. Y. A., Wong, P. L. E., Lai, C. K. W., and Ho, J. K. S. (1994), Effects of long-acting β2-adrenoceptor agonists on mast cells of rat, guinea pig, and human. Int. Arch. Allergy Immunol. 105, 177–180.

    Article  PubMed  CAS  Google Scholar 

  26. Church, M. K. and Hiroi, J. (1987), Inhibition of IgE-dependent histamine release from human dispersed lung mast cells by anti-allergic drugs and salbutamol. Br. J. Pharmacol. 90, 421–429.

    PubMed  CAS  Google Scholar 

  27. Chang, L. K., Suvarna, K., Chess-Williams, R., and Peachell, P. T. (2003), Desensitization of β2-adrenoceptor-mediated responses by short-acting β2-adrenoceptor agonists in human lung mast cells. Br. J. Pharmacol. 138, 512–520.

    Article  CAS  Google Scholar 

  28. Scola, A-M., Chong, L. K., Suvarna, S. K., Chess-Williams, R., and Peachell, P. T. (2004), Desensitisation of mast cell β2-adrenoceptor-mediated responses by salmeterol and formeterol. Br. J. Pharmacol. 141, 163–171.

    Article  PubMed  CAS  Google Scholar 

  29. Scola, A-M., Chong, L. K., Chess-Williams, R., and Peachell, P. T. (2004), Influence of agonist intrinsic activity on the desensitisation of β2-adrenoceptor-mediated responses in mast cells. Br. J. Pharmacol. 143, 71–80.

    Article  PubMed  CAS  Google Scholar 

  30. Undem, B. J., Peachell, P. T., and Lichtenstein, L. M. (1988), Isoproterenol-induced inhibition of immunoglobulin E-mediated release of histamine and arachidonic acid metabolites from the human lung mast cell. J. Pharmacol. Exp. Ther. 247, 209–217.

    PubMed  CAS  Google Scholar 

  31. Butchers, P. R., Vardey, C. J., and Johnson, M. (1991), Salmeterol: a potent and long-acting inhibitor of inflammatory mediator release from human lung. Br. J. Pharmacol. 104, 672–676.

    PubMed  CAS  Google Scholar 

  32. Chong, L. K., Cooper, E., Vardey, C. J., and Peachell, P. T. (1998), Salmeterol inhibition of mediator release from human lung mast cells by β-adrenoceptor-dependent and independent mechanisms. Br. J. Pharmacol. 123, 1009–1015.

    Article  PubMed  CAS  Google Scholar 

  33. Howarth, P. H., Durham, S. H., Lee, T. M., Kay, A. B., Church, M. K., and Holgate, S. T. (1985), Influence of albuterol, cromolyn sodium and ipratropium bromide on the airway and circulating mediator responses to allergen bronchial provocation in asthma. Am. Rev. Respir. Dis. 132, 986–992.

    PubMed  CAS  Google Scholar 

  34. Chong, L. K., Chess-Williams, R., and Peachell, P. T. (2002), Pharmacological characterisation of the β-adrenoceptor expressed by human lung mast cells. Eur. J. Pharmacol. 437, 1–7.

    Article  PubMed  CAS  Google Scholar 

  35. Proud, D., Reynolds, C. J., Lichtenstein, L. M., Kagey-Sobotka, A., and Togias A. (1998), Intranasal salmeterol inhibits allergen-induced vascular permeability but not mast cell activation or cellular infiltration. Clin. Exp. Allergy 28, 868–875.

    Article  PubMed  CAS  Google Scholar 

  36. Taylor, D. A., Jensen, M. W., Aikman, S. L., Harris, J. G., Barnes, P. J., and O'Connor, B. J. (1997), Comparison of salmeterol and albuterol-induced bronchoprotection against adenosine monophosphate and histamine in mild asthma. Am. J. Respir. Crit. Care Med. 136, 1731–1737.

    Google Scholar 

  37. Russo, C., Zeng, D., Prosperini, G., Spicuzza, L., Guarino, F., and Polosa, R. (2005), Effect of salbutamol on nasal symptoms and mast cell degranulation induced by adenosine 5′ monophosphate nasal challenge. Clin. Exp. Allergy 35, 1192–1196.

    Article  PubMed  CAS  Google Scholar 

  38. Nightingale, J. A., Rogers, D. F., and Barnes, P. J. (1999), Differential effect of formoterol on adenosine monophosphate and histamine reactivity in asthma. Am. J. Respir. Crit. Care Med. 159, 1786–1790.

    PubMed  CAS  Google Scholar 

  39. Ketchell, R. I., Jensen, M. W., Spina, D., and O'Connor, B. J. (2002), Dose-related effects of formoterol on airway responsiveness to adenosine 5′ monophosphate and histamine. Eur. Respir. J. 19, 611–616.

    Article  PubMed  CAS  Google Scholar 

  40. Drury, D. E. J., Chong, L. K., Ghahramani, P., and Peachell, P. T. (1998), Influence of receptor reserve on β-adrenoceptor-mediated responses in human lung mast cells. Br. J. Pharmacol. 124, 711–718.

    Article  PubMed  CAS  Google Scholar 

  41. MacEwan, D. J., Kim, G. D., and Milligan, G. (1995), Analysis of the role of receptor number in defining the intrinsic activity and potency of partial agonists in neuroblastoma x glioma hybrid NG108-15 cells transfected to express differing levels of the human β2-adrenoceptor. Mol. Pharmacol. 48, 316–325.

    PubMed  CAS  Google Scholar 

  42. Peachell, P. T., MacGlashan, D. W., Lichtenstein, L. M., and Schleimer, R. P. (1988), Regulation of human basophil and lung mast cell function by cAMP. J. Immunol. 140, 571–579.

    PubMed  CAS  Google Scholar 

  43. Falcone, F. H., Haas, H., and Gibbs, B. F. (2000), The human basophil: a new appreciation of its role in immune responses. Blood 96, 4028–4038.

    PubMed  CAS  Google Scholar 

  44. Botana, L. M. and MacGlashan, D. W. (1994), Differential effects of cAMP-elevating drugs on stimulus-induced calcium changes in human basophils. J. Leuk. Biol. 55, 798–804.

    CAS  Google Scholar 

  45. Su, Y-F., Harden, T. K., and Perkins, J. P. (1980), Catecholamine-specific desensitization of adenylate cyclase; evidence for a multi-step process. J. Biol. Chem. 255, 7410–7419.

    PubMed  CAS  Google Scholar 

  46. Ferguson, S. S. G. (2001), Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53, 1–24.

    PubMed  CAS  Google Scholar 

  47. Kohout, T. A. and Lefkowitz, R. J. (2003), Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol. Pharmacol. 63, 9–18.

    Article  PubMed  CAS  Google Scholar 

  48. Benovic, J. L., Staniszewski, C., Mayor, F., Caron, M. G., and Lefkowitz, R. J. (1988), β-adrenergic kinase. Activity of partial agonists for stimulation of adenylate cyclase correlates with ability to promote receptor phosphorylation. J. Biol. Chem. 263, 3893–3897.

    PubMed  CAS  Google Scholar 

  49. January, B., Seibold, A., Whaley, B., et al. (1997), β2-Adrenergic receptor desensitization, internaliza-tion, and phosphorylation in response to full and partial agonists. J. Biol. Chem., 272, 23,871–23,879.

    Article  CAS  Google Scholar 

  50. Giembycz, M. A. (1996). Phosphodiesterase 4 and tolerance to b2-adrenoceptor agonists in asthma. Trends Pharmacol. Sci. 17, 331–336.

    Article  PubMed  CAS  Google Scholar 

  51. Pinney, P. A., Donnelly, L. E., Belvisi, M. G., et al. (2001). Chronic systemic administration of salmeterol to rats promotes pulmonary β2-adrenoceptor desensitization and down-regulation of Gsa. Br. J. Pharmacol. 132, 1261–1270.

    Article  Google Scholar 

  52. Finney, P. A., Belvisi, M. G., Donnelly, L. E., et al. (2000), Albuterol-induced down-regulation of Gsa accounts for pulmonary β2-adrenoceptor desensitization in vivo. J. Clin. Invest. 106, 125–135.

    PubMed  CAS  Google Scholar 

  53. Chong, L. K., Morice, A. H., Yeo, W. W., Schleimer, R. P., and Peachell, P. T. (1995). Functional desensitization of β-agonist responses in human lung mast cells. Am. J. Respir. Cell Mol. Biol. 13, 540–546.

    PubMed  CAS  Google Scholar 

  54. Chong, L. K., Drury, D. E. J., Dummer, J. F., Ghahramani, P., Schleimer, R. P., and Peachell, P. T. (1997), Protection by dexamethasone of the functional desensitization to b2-adrenoceptor-mediated responses in human lung mast cells. Br. J. Pharmacol. 121, 717–722.

    Article  PubMed  CAS  Google Scholar 

  55. Chong, L. K. and Peachell, P. T. (1999), β-adrenoceptor reserve in human lung: a comparison between airway smooth muscle and mast cells. Eur. J. Pharmacol. 372, 115–122.

    Article  Google Scholar 

  56. Van der Hollden, P. J. C. M., Van Amsterdam, J. G. C., and Zaagsma, J. (1984), Desensitization of smooth muscle and mast cell β-adrenoceptors in the airways of the guinea pig. Eur. J. Resp. Dis. (supplement 135) 65, 128–134.

    Google Scholar 

  57. Bremner, P., Siebers, R., Crane, J., Beasley, R., and Burgess, C. Partial vs full beta-receptor agonism: A clinical study of inhaled albuterol and fenoterol. Chest 109, 957–962.

  58. Hanania, N. A., Sharafkhaneh, A., Barber, R., and Dickey, B. F. (2002), β-agonist intrinsic efficacy. Measurement and clinical significance. Am. J. Respir. Crit. Care Med. 165, 1353–1358.

    Article  PubMed  Google Scholar 

  59. Clark, R. B., Knoll, B. J., and Barber, R. (1999). Partial agonists and G protein-coupled receptor desensitization. Trends Pharmacol. Sci. 20, 279–286.

    Article  PubMed  CAS  Google Scholar 

  60. Pittman, R. N., Reynolds, E. E., and Molinoff, P. B. (1984), Relationship between intrinsic activities of agonists in normal and desensitized tissue and agonist-induced loss of beta-adrenergic receptors. J. Pharmacol. Exp. Ther. 230, 614–618.

    PubMed  CAS  Google Scholar 

  61. Maudsley, S., Martin, B., and Luttrell, L. M. (2005), The origins of diversity and specificity in G-protein-coupled receptor signaling. J. Pharmacol. Exp. Ther. 314, 485–494.

    Article  PubMed  CAS  Google Scholar 

  62. Yates, D. H., Wordsell, M., and Barnes, P. J. (1997). Effect of regular salmoterol treatment on albuterol-induced bronchoprotection in mild asthma. Am. J. Respir. Care Med. 156, 988–991.

    CAS  Google Scholar 

  63. Van Der Woude, H. J., Winter, T. H., and Aalbers, R. (2001), Decreased bronchodilating effect of salbutamol in relieving methacholine induced moderate to severe bronchoconstriction during high dose treatment with long-acting β2-agonists. Thorax 56, 529–535.

    Article  PubMed  Google Scholar 

  64. Grove, A. and Lipworth, R. J. (1995). Bronchedilator subsensitivity to salbutamol after twice daily salmeterol in asthmatic patients. Lancet 346, 201–206.

    Article  PubMed  CAS  Google Scholar 

  65. Hauck, R. W., Bohm, M., Gegenbach, S., Sunder-Plassmann, L., Fruhmann, G., and Erdmann, E. (1990), β2-adrenoceptors in human lung and peripheral mononuclear leukocytes of untreated and terbutaline-treated patients. Chest 98, 376–381.

    Article  PubMed  CAS  Google Scholar 

  66. Bai, T. B., Mak, J. C. W., and Barnes, P. J. (1992), A comparison of β-adrenergic receptors and in vitro relaxant responses to isoproterenol in asthmatic airway smooth muscle. Am. J. Respir. Cell Mol. Biol. 6, 647–651.

    PubMed  CAS  Google Scholar 

  67. Hasegawa, M. and Townley, R. G. (1983), Difference between lung and spleen susceptibility of beta-adrenergic receptors to desensitization by terbutaline. J. Allergy Clin. Immunol. 71, 230–238.

    Article  PubMed  CAS  Google Scholar 

  68. Herepath, M. L., and Broadley, K. J. (1992), Resistance of β2-adrenoceptor-mediated responses of lung strips to desensitization by long-term agonist exposure-comparison with atrial β2-adrenoceptor-mediated responses. Eur. J. Pharmacol. 215, 209–219.

    Article  PubMed  CAS  Google Scholar 

  69. Kirstein, S. I. and Insel, P. A. (2004). Autonomic nervous system Pharmacogenomics: a progress report. Pharmacol. Rev. 56, 31–52.

    Article  PubMed  CAS  Google Scholar 

  70. Green, S. A., Turki, J., Hall, I. P., and Liggett, S. B. (1995), Implications of genetic variability of human β2-adrenergic receptor structure. Pulmon. Pharmacol. 8, 1–10.

    Article  CAS  Google Scholar 

  71. Green, S. A., Cole, G., Jacinto, M., Innis, M., and Liggett, S. B. (1993), A polymorphism of the human β2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J. Biol. Chem. 268, 23,116–23,121.

    CAS  Google Scholar 

  72. McGraw, D. W., Forbes, S. L., Kramer, L. A., and Liggett, S. B. (1998), Polymorphisms of the 5′ leader cistron of the human β2-adrenergic receptor regulate receptor expression. J. Clin. Invest. 102, 1927–1932.

    Article  PubMed  CAS  Google Scholar 

  73. Büscher, R., Herrmann, V., and Insel, P. A. (1999), Human adrenoceptor polymorphisms: evolving recognition of clinical importance. Trends Pharmacol. Sci. 20, 94–99.

    Article  PubMed  Google Scholar 

  74. Taylor, D. R. and Kennedy, M. A. (2002), Beta-adrenergic receptor polymorphisms and drug responses in asthma. Pharmacogenomics 3, 173–184.

    Article  PubMed  CAS  Google Scholar 

  75. Kay, L. J., Cheng, L. K., Rostami-Hodjegan, A., and Peacheli, P. T. (2003), Influence of the th164lle polymorphism in the β2-adrenoceptor on the effects of β-adrenoceptor agonists on human lung mast cells. Int. Immunopharmacol. 3, 91–95.

    Article  PubMed  CAS  Google Scholar 

  76. Green, S. A., Cole, G., Forbes, S. L., Kramer, L. A., and Liggett, S. B. (2001), The Ile164 β2-adrenoceptor polymorphism alters salmeterol exosite binding and conventional agonist coupling to Gs, Eur. J. Pharmacol. 421, 141–147.

    Article  PubMed  CAS  Google Scholar 

  77. Reihsaus, E., Innis, M., MacIntyre, N., and Liggett, S. B. (1993), Mutations in the gene encoding for the β2-adrenergic receptor in normal and asthmatic subjects. Am. J. Respir. Cell Mol. Biol. 8, 334–339.

    PubMed  CAS  Google Scholar 

  78. Aynacioglu, A. S., Cascorbi, I., Güngör, K., et al., (1999), Population frequency, mutation linkage and analytical methodology for the Arg16Gly, Gln27Glu and Thr164Ile polymorphisms in the β2-adrenergic receptor among Turks. Br. J. Clin. Pharmacol. 48, 761–764.

    Article  PubMed  CAS  Google Scholar 

  79. Green, S. A., Turki, J., Innis, M., and Liggett, S. B. (1994), Amino-terminal polymorphisms of the human β2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry 33, 9414–9419.

    Article  PubMed  CAS  Google Scholar 

  80. Green, S. A., Turki, J., Bejarano, P., Hall, I. P., and Liggett, S. B. (1995), Influence of β2-adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 13, 25–33.

    PubMed  CAS  Google Scholar 

  81. Chong, L. K., Chowdry, J., Ghahramani, P., and Peachell, P. T. (2000), Influence of genetic polymorphisms in the β2-adrenoceptor on desensitization in human lung mast cells. Pharmacogenetics 10, 153–162.

    Article  PubMed  CAS  Google Scholar 

  82. Drysdale, C. M., McGraw, D. W., Stack, C. B., et al. (2000), Complex promoter and coding region β2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc. Natl. Acad. Sci. USA 97, 10,483–10,488.

    Article  CAS  Google Scholar 

  83. Lipworth, B., Koppelman, G. H., Wheatley, A. P., et al. (2002), β2-adrenoceptor polymorphisms: extended haplotypes and functional effects in peripheral blood mononuclear cells. Thorax 57, 61–66.

    Article  PubMed  CAS  Google Scholar 

  84. Taylor, D. R., Epton, M. J., Kennedy, M. A., et al. (2005), Bronchodilator reponse in relation to β2-adrenoceptor haplotype in patients with asthma. Am. J. Respir. Crit. Care Med. 172, 700–703.

    Article  PubMed  Google Scholar 

  85. Oostendorp, J., Postma, D. S., Volders, H., et al. (2005), Differential desensitization of homozygous haplotypes of the β2-adrenergic receptor in lymphocytes. Am. J. Respir. Crit. Care Med. 172, 322–328.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peachell, P. Regulation of mast cells by β-agonists. Clinic Rev Allerg Immunol 31, 131–141 (2006). https://doi.org/10.1385/CRIAI:31:2:131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CRIAI:31:2:131

Index Entries

Navigation