Skip to main content
Log in

Role of receptor and nonreceptor protein tyrosine kinases in H2O2-induced PKB and ERK1/2 signaling

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Excessive generation of reactive oxygen species (ROS) has been implicated in the pathogenesis of many diseases, including atherosclerosis, hypertension, and vascular complications of diabetes. However, the precise mechanisms by which ROS contribute to the development of these diseases are not fully characterized. Hydrogen peroxide (H2O2), a ROS, has been shown to activate several signaling protein kinases, such as extracellular signal-regulated kinase (ERK)1/2 and protein kinase B (PKB) in different cell types, notably in vascular smooth muscle cells. Because these pathways regulate cellular mitogenesis, migration, proliferation, survival, and death responses, their aberrant activtion has been suggested to be a potential mechanism of ROS-induced pathologies. The upstream elements responsible for H2O2-induced ERK1/2 and PKB activation remain poorly characterized, but a potential role of receptor and nonreceptor protein tyrosine kinases (PTKs) as triggers that initiate such events has been postulated. Therefore, the aim of this review is to highlight the involvement of receptor and nonreceptor PTKs in modulating H2O2-induced ERK1/2 and PKB signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Westhuyzen, J. (1997) The oxidation hypothesis of atherosclerosis: an update. Ann. Clin. Lab. Sci 27, 1–10.

    PubMed  CAS  Google Scholar 

  2. Nunes, G. L., Robinson, K., Kalynych, A., King, III, S. B., Sgoutas, D. S., and Berk, B. C. (1997) Vitamins C and E inhibit O2- production in the pig coronary artery. Circulation 96, 3593–3601.

    PubMed  CAS  Google Scholar 

  3. Dhalla, N. S., Temsah, R. M., and Netticadan, T. (2000) Role of oxidative stress in cardiovascular diseases. J. Hypertens. 18, 655–673.

    Article  PubMed  CAS  Google Scholar 

  4. Droge, W. (2002) Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95.

    PubMed  CAS  Google Scholar 

  5. Pollock, D. M. and Pollock, J. S. (2005) Endothelin and oxidative stress in the vascular system. Curr. Vasc. Pharmacol. 3, 365–367.

    Article  PubMed  CAS  Google Scholar 

  6. Fortuno, A., Jose, G. S., Moreno, M. U., Diez, J., and Zalba, G. (2005) Oxidative stress and vascular remodelling. Exp. Physiol. 90, 457–462.

    Article  PubMed  CAS  Google Scholar 

  7. Houstis, N., Rosen, E. D., and Lander, E. S. (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440, 944–948.

    Article  PubMed  CAS  Google Scholar 

  8. Turrens, J. F. (1997) Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17, 3–8.

    Article  PubMed  CAS  Google Scholar 

  9. Boveris, A. and Chance, B. (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134, 707–716.

    PubMed  CAS  Google Scholar 

  10. Mahadev, K., Wu, X., Zilbering, A., Zhu, L., Lawrence, J. T., and Goldstein, B. J. (2001) Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes 1. J. Biol. Chem. 276, 48,662–48,669.

    CAS  Google Scholar 

  11. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K., and Finkel, T. (1995) Requirement for generation of H202 for platelet-derived growth factor signal transduction. Science 270, 296–299.

    Article  PubMed  CAS  Google Scholar 

  12. Bae, Y. S., Kang, S. W., Seo, M. S., et al. (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217–221.

    Article  PubMed  CAS  Google Scholar 

  13. Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D., and Alexander, R. W. (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 74, 1141–1148.

    PubMed  CAS  Google Scholar 

  14. Daou, G. B. and Srivastava, A. K. (2004) Reactive oxygen species mediate endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 signaling, as well as protein synthesis, in vascular smooth muscle cells. Free Radic. Biol. Med. 37, 208–215.

    Article  PubMed  CAS  Google Scholar 

  15. Lo, Y. Y. and Cruz, T. F. (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J. Biol. Chem. 270, 11,727–11,730.

    CAS  Google Scholar 

  16. Lo, Y. Y., Wong, J. M., and Cruz, T. F. (1996) Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J. Biol. Chem. 271, 15,703–15,707.

    Article  CAS  Google Scholar 

  17. Blanc, A., Pandey, N. R., and Srivastava, A. K. (2003) Synchronous activation of ERK 1/2, p38mapk and PKB/Akt signaling by H2O2 in vascular smooth mucle cells: potential involvement in vascular disease (review). Int. J. Mol. Med. 11, 229–234.

    PubMed  CAS  Google Scholar 

  18. Blanc, A., Pandey, N. R., and Srivastava, A. K. (2004) Distinct roles of Ca2+, calmodulin, and protein kinase C in H2O2-induced activation of ERK1/2, p38 MAPK, and protein kinase B signaling in vascular smooth muscle cells. Antioxid. Redox. Signal. 6, 353–366.

    Article  PubMed  CAS  Google Scholar 

  19. Mehdi, M. Z., Pandey, N. R., Pandey, S. K., and Srivastava, A. K. (2005) H2O2-induced phosphorylation of ERK1/2 and PKB requires tyrosine kinase activity of insulin receptor and c-Src. Antioxid. Redox Signal 7, 1014–1020.

    Article  PubMed  CAS  Google Scholar 

  20. Zhuang, S. and Schnellmann, R. G. (2004) H2O2-induced transactivation of EGF receptor requires Src and mediates ERK1/2, but not Akt, activation in renal cells. Am. J. Physiol. Renal Physiol. 286, F858-F865.

    Article  PubMed  Google Scholar 

  21. Wang, X., McCullough, K. D., Franke, T. F., and Holbrook, N. J. (2000) Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J. Biol. Chem. 275, 14,624–14,631.

    CAS  Google Scholar 

  22. Seger, R. and Krebs, E. G. (1995) The MAPK signaling cascade. FASEB J. 9, 726–735.

    PubMed  CAS  Google Scholar 

  23. Kyosseva, S. V. (2004) Mitogen-activated protein kinase signaling. Int. Rev. Neurobiol. 59, 201–220.

    PubMed  CAS  Google Scholar 

  24. Whiteman, E. L., Cho, H., and Birnbaum, M. J. (2002) Role of Akt/protein kinase B in metabolism. Trends Endocrinol. Metab. 13, 444–451.

    Article  PubMed  CAS  Google Scholar 

  25. Hanada, M., Feng, J., and Hemmings, B. A. (2004) Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochim. Biophys. Acta 1697, 3–16.

    PubMed  CAS  Google Scholar 

  26. Normanno, N., Bianco, C., Strizzi, L., et al. (2005) The ErbB receptors and their ligands in cancer: an overview. Curr. Drug Targets 6, 243–257.

    Article  PubMed  CAS  Google Scholar 

  27. Frank, G. D., Mifune, M., Inagami, T., et al. (2003) Distinct mechanisms of receptor and nonreceptor tyrosine kinase activation by reactive oxygen species in vascular smooth muscle cells: role of metalloprotease and protein kinase C-delta. Mol. Cell Biol. 23, 1581–1589.

    Article  PubMed  CAS  Google Scholar 

  28. Saito, S., Frank, G. D., Mifune, M., et al. (2002) Ligand independent trans-activation of the platelet-derived growth factor receptor by reactive oxygen species requires protein kinase C-delta and c-Src. J. Biol. Chem. 277, 44,695–44,700.

    CAS  Google Scholar 

  29. Mifune, M., Ohtsu, H., Suzuki, H., et al. (2005) G protein coupling and second messenger generation are indispensable for metalloprotease-dependent, heparin-binding epidermal growth factor shedding through angiotensin II type-1 receptor. J. Biol. Chem. 280, 26,592–26,599.

    Article  CAS  Google Scholar 

  30. Purdom, S. and Chen, Q. M. (2005) Epidermal growth factor receptor-dependent and-independent pathways in hydrogen peroxide-induced mitogen-activated protein kinase activation in cardiomyocytes and heart fibroblasts. J. Pharmacol. Exp. Ther. 312, 1179–1186.

    Article  PubMed  CAS  Google Scholar 

  31. Levitzki, A. and Gazit, A. (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782–1788.

    Article  PubMed  CAS  Google Scholar 

  32. Tabet, F., Schiffrin, E. L., and Touyz, R. M. (2005) Mitogen-activated protein kinase activation by hydrogen peroxide is mediated through tyrosine kinase-dependent, protein kinase C-independent pathways in vascular smooth muscle cells: upregulation in spontaneously hypertensive rats. J. Hypertens. 23, 2005–2012.

    Article  PubMed  CAS  Google Scholar 

  33. Azar, Z. M., Mehdi, M. Z., and Srivastava A. K. (2006) Activation of insulin-like growth factor type-1 receptor is required for H2O2 induced PKB phosphorylation in vascular smooth muscle cells. Can. J. Physiol. Pharmacol. 84, 777–786.

    Article  PubMed  CAS  Google Scholar 

  34. Board, R. and Jayson, G. C. (2005) Platelet-derived growth factor receptor (PDGFR): a target for anticancer therapeutics. Drug Resist. Updat. 8, 75–83.

    Article  PubMed  CAS  Google Scholar 

  35. Heeneman, S., Haendeler, J., Saito, Y., Ishida, M., and Berk, B. C. (2000) Angiotensin II induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein Shc. J. Biol. Chem. 275, 15,926–15,932.

    Article  CAS  Google Scholar 

  36. Esposito, F., Chirico, G., Montesano, G. N., et al. (2003) Protein kinase B activation by reactive oxygen species is independent of tyrosine kinase receptor phosphorylation and requires SRC activity. J. Biol. Chem. 278, 20,828–20,834.

    CAS  Google Scholar 

  37. Catarzi, S., Biagioni, C., Giannoni, E., et al. (2005) Redox regulation of platelet-derived-growth-factor-receptor: role of NADPH-oxidase and c-Src tyrosine kinase. Biochem. Biophys. Acta 1745, 166–175.

    Article  PubMed  CAS  Google Scholar 

  38. Mehdi, M. Z., Pandey, S. K., Theberge, J. F., and Srivastava, A. K. (2006) Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochem. Biophys. 44, 73–81.

    Article  PubMed  CAS  Google Scholar 

  39. Srivastava, A. K. (2005) Redox regulation of insulin action and signaling. Antioxid. Redox Signal 7, 1011–1013.

    Article  PubMed  CAS  Google Scholar 

  40. Goldstein, B. J., Mahadev, K., Wu, X., Zhu, L., and Motoshima, H. (2005) Role of insulin-induced reactive oxygen species in the insulin signaling pathway. Antioxid. Redox Signal 7, 1021–1031.

    Article  PubMed  CAS  Google Scholar 

  41. Hayes, G. R. and Lockwood, D. H. (1987) Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide. Proc. Natl. Acad. Sci. USA 84, 8115–8119.

    Article  PubMed  CAS  Google Scholar 

  42. May, J. M. and de Haen, C. (1979) The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes. J. Biol. Chem. 254, 9017–9021.

    PubMed  CAS  Google Scholar 

  43. Little, S. A. and de Haen, C. (1980) Effects of hydrogen peroxide on basal and hormone-stimulated lipolysis in perfused rat fat cells in relation to the mechanism of action of insulin. J. Biol. Chem. 255, 10,888–10,895.

    CAS  Google Scholar 

  44. Adams, T. E., Epa, V. C., Garrett, T. P., and Ward, C. W. (2000) Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol. Life Sci. 57, 1050–1093.

    Article  PubMed  CAS  Google Scholar 

  45. Zahradka, P., Litchie, B., Storie, B., and Helwer, G. (2004) Transactivation of the insulin-like growth factor-I receptor by angiotensin II mediates downstream signaling from the angiotensin II type 1 receptor to phosphatidylinositol 3-kinase. Endocrinology 145, 2978–2987.

    Article  PubMed  CAS  Google Scholar 

  46. Touyz R. M., Cruzado, M., Tabet, F., Yao, G., Salomon, S., and Schiffrin, E. L. (2003) Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Can. J. Physiol. Pharmacol. 81, 159–167.

    Article  PubMed  CAS  Google Scholar 

  47. Daub, H., Weiss, F. U., Wallasch, C., and Ullrich, A. (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379, 557–560.

    Article  PubMed  CAS  Google Scholar 

  48. Luttrell, L. M., Della Rocca, G. J., van Biesen, T., Luttrell, D. K., and Lefkowitz, R. J. (1997) Gbetagamma subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J. Biol. Chem. 272, 4637–4644.

    Article  PubMed  CAS  Google Scholar 

  49. Martin, G. S. (2004) The road to Src. Oncogene 23, 7910–7917.

    Article  PubMed  CAS  Google Scholar 

  50. Rosado, J. A., Redondo, P. C., Salido, G. M., Gomez-Arteta, E., Sage, S. O., and Pariente, J. A. (2004) Hydrogen peroxide generation induces pp60src activation in human platelets: evidence for the involvement of this pathway in store-mediated calcium entry. J. Biol. Chem. 279, 1665–1675.

    Article  PubMed  CAS  Google Scholar 

  51. Hanke, J. H., Gardner, J. P., Dow, R. L., et al. (1996) Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695–701.

    Article  PubMed  CAS  Google Scholar 

  52. Prenzel, N., Zwick, E., Leserer, M., and Ullrich, A. (2000) Tyrosine kinase signalling in breast cancer. Epidermal growth factor receptor: convergence point for signal integration and diversification. Breast Cancer Res. 2, 184–190.

    Article  PubMed  CAS  Google Scholar 

  53. Lee, J. S., Kim, S. Y., Kwon, C. H., and Kim, Y. K. (2005) EGFR-dependent ERK activation triggers hydrogen peroxide-induced apoptosis in OK renal epithelial cells. Arch. Toxicol. 1–10.

  54. Tang, H., Hao, Q., Rutherford, S. A., Low, B., and Zhao, Z. J. (2005) Inactivation of SRC family tyrosine kinases by reactive oxygen species in vivo. J. Biol. Chem. 280, 23,918–23,925.

    CAS  Google Scholar 

  55. Lev, S., Moreno, H., Martinez, R., et al. (1995) Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature 376, 737–745.

    Article  PubMed  CAS  Google Scholar 

  56. Frank, G. D., Motley, E. D., Inagami, T., and Eguchi, S. (2000) PYK2/CAKbeta represents a redox-sensitive tyrosine kinase in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 270, 761–765.

    Article  PubMed  CAS  Google Scholar 

  57. Andreev, J., Galisteo, M. L., Kranenburg, O., et al. (2001) Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor (EGFR) but are not required for coupling to the mitogen-activated protein (MAP) kinase signaling cascade. J. Biol. Chem. 276, 20,130–20,135.

    Article  CAS  Google Scholar 

  58. Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S. A., and Schlessinger J. (1996) A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383, 547–550.

    Article  PubMed  CAS  Google Scholar 

  59. Keely, S. J., Calandrella, S. O., and Barrett, K. E. (2000) Carbachol-stimulated transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T(84) cells is mediated by intracellular ca(2+), PYK-2, and p60(src). J. Biol. Chem. 275, 12,619–12,625.

    Article  CAS  Google Scholar 

  60. Banno, Y., Ohguchi, K., Matsumoto, N., et al. (2005) Implication of phospholipase D2 in oxidant-induced phosphoinositide 3-kinase signaling via Pyk2 activation in PC12 cells. J. Biol. Chem. 280, 16,319–16,324.

    CAS  Google Scholar 

  61. Rocic, P. and Lucchesi, P. A. (2001) Down-regulation by antisense oligonucleotides establishes a role for the proline-rich tyrosine kinase PYK2 in angiotensin ii-induced signaling in vascular smooth muscle. J. Biol. Chem. 276, 21,902–21,906.

    Article  CAS  Google Scholar 

  62. Wallace, T. A. and Sayeski, P. P. (2006) Jak2 tyrosine kinase: a mediator of both housekeeping and ligand-dependent gene expression? Cell Biochem. Biophys. 44, 213–222.

    Article  PubMed  CAS  Google Scholar 

  63. Simon, A. R., Rai, U., Fanburg, B. L., and Cochran, B. H. (1998) Activation of the JAK-STAT pathway by reactive oxygen species. Am. J. Physiol. 275, C1640-C1652.

    PubMed  CAS  Google Scholar 

  64. Marrero, M. B., Schieffer, B., Paxton, W. G., et al. (1995) Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375, 247–250.

    Article  PubMed  CAS  Google Scholar 

  65. Marrero, M. B., Schieffer, B., Li, B., Sun, J., Harp, J. B., and Ling, B. N. (1997) Role of Janus kinase/signal transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin II- and platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J. Biol. Chem. 272, 24,684–24,690.

    Article  CAS  Google Scholar 

  66. Madamanchi, N. R., Li, S., Patterson, C., and Runge, M. S. (2001) Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arterioscler. Thromb. Vasc. Biol. 21, 321–326.

    PubMed  CAS  Google Scholar 

  67. Abe, J. and Berk, B. C. (1999) Fyn and JAK2 mediate Ras activation by reactive oxygen species. J. Biol. Chem. 274, 21,003–21,010.

    CAS  Google Scholar 

  68. Lee, S. R., Kwon, K. S., Kim, S. R., and Rhee, S. G. (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A 431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15,366–15,372.

    CAS  Google Scholar 

  69. Meng, T. C., Fukada, T., and Tonks, N. K. (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387–399.

    Article  PubMed  CAS  Google Scholar 

  70. Lee, S. R., Yang, K. S., Kwon, J., Lee, C., Jeong, W., and Rhee, S. G. (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J. Biol. Chem. 277, 20,336–20,342.

    CAS  Google Scholar 

  71. Leslie, N. R., Bennett, D., Lindsay, Y. E., Stewart, H., Gray, A., and Downes, C. P. (2003) Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J. 22, 5501–5510.

    Article  PubMed  CAS  Google Scholar 

  72. Kwon, J., Lee, S. R., Yang, K. S., et al. (2004) Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci USA 101, 16,419–16,424.

    CAS  Google Scholar 

  73. Seo, J. H., Ahn, Y., Lee, S. R., Yeol, Y. C., and Chung, H. K. (2005) The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3 kinase/Akt pathway. Mol. Biol. Cell 16, 348–357.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehdi, M.Z., Azar, Z.M. & Srivastava, A.K. Role of receptor and nonreceptor protein tyrosine kinases in H2O2-induced PKB and ERK1/2 signaling. Cell Biochem Biophys 47, 1–10 (2007). https://doi.org/10.1385/CBB:47:1:1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:47:1:1

Index Entries

Navigation