Skip to main content
Log in

Modeling of molecular and cellular mechanisms involved in Ca2+ signal encoding in airway myocytes

  • Review
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In airway myocytes signal transduction via cytosolic calcium plays an important role. In relation with experimental results we review models of basic molecular and cellular mechanisms involved in the signal transduction from the myocyte stimulation to the activation of the contractile apparatus. We concentrate on mechanisms for encoding of input signals into Ca2+ signals and the mechanisms for their decoding. The mechanisms are arranged into a general scheme of cellular signaling, the so-called bow-tie architecture of signaling, in which calcium plays the role of a common media for cellular signals and links the encoding and decoding part. The encoding of calcium signals in airway myocytes is better known and is presented in more detail. In particular, we focus on three recent models taking into account the intracellular calcium handling and ion fluxes through the plasma membrane. The model of membrane conductances was originally proposed for predicting membrane depolarization and voltage-dependent Ca2+ influx triggered by initial cytosolic Ca2+ increase as observed on cholinergic stimulation. Cellular models of intracellular Ca2+ handling were developed to investigate the role of a mixed population of InsP3 receptor isoforms and the cellular environment in the occurrence of Ca2+ oscillations, and the respective role of the sarcoplasmic reticulum, mitochondria, and cytosolic Ca2+-binding proteins in cytosolic Ca2+ clearance. Modeling the mechanisms responsible for the decoding of calcium signals is developed in a lesser extent; however, the most recent theoretical studies are briefly presented in relation with the known experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roux, E., Molimard, M., Savineau, J. P., and Marthan, R. (1998) Muscarinic stimulation of airway smooth muscle cells. Gen. Pharmacol. 31, 349–356.

    PubMed  CAS  Google Scholar 

  2. Prakash, Y. S., Kannan, M. S., Walseth, T. F., and Sieck, G. C. (1998) Role of cyclic ADP-ribose in the regulation of [Ca2+]i in porcine tracheal smooth muscle. Am. J. Physiol. 274, C1653-C1660.

    PubMed  CAS  Google Scholar 

  3. Rodger, I. W. Voltage-dependent and receptor-operated calcium channels. In Airways Smooth Muscle: Biochemical Control of Contraction and Relaxation (Raeburn, D., Giembycz, M. A., ed.) Birkhäuser Verlag, Basel, 1994, pp. 155–168.

    Google Scholar 

  4. Marthan, R. (2004) Store-operated calcium entry and intracellular calcium release channels in airway smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 286, L907–8.

    PubMed  CAS  Google Scholar 

  5. Roux, E. and Marhl, M. (2004) Role of sarcoplasmic reticulum and mitochondria in ca(2+) removal in airway myocytes. Biophys. J. 86, 2583–2595.

    PubMed  CAS  Google Scholar 

  6. Somlyo, A. P. and Somlyo, A. V. (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325–1358.

    PubMed  CAS  Google Scholar 

  7. Bai, Y. and Sanderson, M. J. (2006) Modulation of the Ca2+ sensitivity of airway smooth muscle cells in murine lung slices. Am. J. Physiol. Lung Cell Mol. Physiol. 291(2), L208-L221.

    PubMed  CAS  Google Scholar 

  8. Johnson, M. (1998) The beta-adrenoceptor. Am. J. Resp. Crit. Care Med. 158, S146-S153.

    PubMed  CAS  Google Scholar 

  9. Janssen, L. J., Tazzeo, T., and Zuo, J. (2004) Enhanced myosin phosphatase and Ca(2+)-uptake mediate adrenergic relaxation of airway smooth muscle. Am. J. Resp. Cell Mol. Biol. 30, 548–554.

    CAS  Google Scholar 

  10. Murthy, K. S. (2006) Signaling for contraction and relaxation in smooth muscle of the gut. Annu. Rev. Physiol. 68, 345–374.

    PubMed  CAS  Google Scholar 

  11. Schaafsma, D., Boterman, M., de Jong, A. M., Hovens, I., Penninks, J. M., Nelemans, S. A., Meurs, H., and Zaagsma, J. (2006) Differential Rho-kinase dependency of full and partial muscarinic receptor agonists in airway smooth muscle contraction. Br. J. Pharmacol. 147, 737–743.

    PubMed  CAS  Google Scholar 

  12. Deng, J. T., Sutherland, C., Brautigan, D. L., Eto, M., and Walsh, M. P. (2002) Phosphorylation of the myosin phosphatase inhibitors, CPI-17 and PHI-1, by integrin-linked kinase. Biochem. J. 367, 517–524.

    PubMed  CAS  Google Scholar 

  13. Huang, J., Mahavadi, S., Sriwai, W., Hu, W., and Murthy, K. S. (2006) Gi-coupled receptors mediate phosphorylation of CPI-17 and MLC20 via preferential activation of the PI3K/ILK pathway. Biochem. J. 396, 193–200.

    PubMed  CAS  Google Scholar 

  14. Niiro, N. and Ikebe, M. (2001) Zipper-interacting protein kinase induces Ca(2+)-free smooth muscle contraction via myosin light chain phosphorylation. J. Biol. Chem. 276, 29567–29574.

    PubMed  CAS  Google Scholar 

  15. Hirano, K., Derkach, D. N., Hirano, M., Nishimura, J., and Kanaide, H. (2003) Protein kinase network in the regulation of phosphorylation and dephosphorylation of smooth muscle myosin light chain. Mol. Cell Biochem. 248, 105–114.

    PubMed  CAS  Google Scholar 

  16. Berridge, M. J., Lipp, P., and Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol. 1, 11–21.

    PubMed  CAS  Google Scholar 

  17. Csete, M. and Doyle, J. (2004) Bow ties, metabolism and disease. Trends Biotechnol. 22, 446–450.

    PubMed  CAS  Google Scholar 

  18. Ma, H. W. and Zeng, A. P. (2003) The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19, 1423–1430.

    PubMed  CAS  Google Scholar 

  19. Schuster, S., Knoke, B., and Marhl, M. (2005) Differential regulation of proteins by bursting calcium oscillations—a theoretical study. Biosystems 81, 49–63.

    PubMed  CAS  Google Scholar 

  20. Marhl, M., Perc, M., and Schuster, S. (2005) Selective regulation of cellular processes via protein cascades acting as band-pass filters for time-limited oscillations. FEBS Lett. 579, 5461–5465.

    PubMed  CAS  Google Scholar 

  21. Howarth, P. H., Knox, A. J., Amrani, Y., Tliba, O., Panettieri, R. A., Jr., and Johnson, M. (2004) Synthetic responses in airway smooth muscle. J. Allergy Clin. Immunol. 114, S32-S50.

    PubMed  CAS  Google Scholar 

  22. Bergner, A. and Sanderson, M. J. (2002) Acetylcholineinduced calcium signaling and contraction of airway smooth muscle cells in lung slices. J. Gen. Physiol. 119, 187–198.

    PubMed  CAS  Google Scholar 

  23. Kajita, J. and Yamaguchi, H. (1993) Calcium mobilization by muscarinic cholinergic stimulation in bovine single airway smooth muscle. Am. J. Physiol. 264, L496-L503.

    PubMed  CAS  Google Scholar 

  24. Perez, J. F. and Sanderson, M. J. (2005) The frequency of calcium oscillations induced by 5-HT, ACH, and KCl determine the contraction of smooth muscle cells of intrapulmonary bronchioles. J. Gen. Physiol. 125, 535–553.

    PubMed  CAS  Google Scholar 

  25. Prakash, Y. S., Pabelick, C. M., Kannan, M. S., and Sieck, G. C. (2000) Spatial and temporal aspects of ACh-induced [Ca2+]i oscillations in porcine tracheal smooth muscle. Cell Calcium 27, 153–162.

    PubMed  CAS  Google Scholar 

  26. Roux, E., Hyvelin, J. M., Savineau, J. P., and Marthan, R. (1998) Calcium signaling in airway smooth muscle cells is altered by in vitro exposure to the aldehyde acrolein. Am. J. Resp. Cell Mol. Biol. 19, 437–444.

    CAS  Google Scholar 

  27. Liu, X. and Farley, J. M. (1996) Frequency modulation of acetylcholine-induced Ca(++)-dependent Cl- current oscillations are mediated by 1, 4, 5-trisphosphate in tracheal myocytes. J. Pharmacol. Exp. Ther. 277, 796–804.

    PubMed  CAS  Google Scholar 

  28. Hyvelin, J. M., Martin, C., Roux, E., Marthan, R., and Savineau, J. P. (2000) Human isolated bronchial smooth muscle contains functional ryanodine/caffeine-sensitive Ca-release channels. Am. J. Resp. Crit. Care Med. 162, 687–694.

    PubMed  CAS  Google Scholar 

  29. Roux, E., Guibert, C., Savineau, J. P., and Marthan, R. (1997) [Ca2+]i oscillations induced by muscarinic stimulation in airway smooth muscle cells: receptor subtypes and correlation with the mechanical activity. Br. J. Pharmacol. 120, 1294–1301.

    PubMed  CAS  Google Scholar 

  30. Nuttle, L. C. and Farley, J. M. (1996) Frequency modulation of acetylcholine-induced oscillations in Ca++ and Ca(++)-activated Cl- current by cAMP in tracheal smooth muscle. J. Pharmacol. Exp. Ther. 277, 753–760.

    PubMed  CAS  Google Scholar 

  31. Kannan, M. S., Prakash, Y. S., Brenner, T., Mickelson, J. R., and Sieck, G. C. (1997) Role of ryanodine receptor channels in Ca2+ oscillations of porcine tracheal smooth muscle. Am. J. Physiol. 272, L659-L664.

    PubMed  CAS  Google Scholar 

  32. Guibert, C., Marthan, R., and Savineau, J. P. (1996) Angiotensin II-induced Ca(2+)-oscillations in vascular myocytes from the rat pulmonary artery. Am. J. Physiol. 270, L637-L642.

    PubMed  CAS  Google Scholar 

  33. Drummond, R. M. and Tuft, R. A. (1999) Release of Ca2+ from the sarcoplasmic reticulum increases mitochondrial [Ca2+] in rat pulmonary artery smooth muscle cells. J. Physiol. 516, 139–147.

    PubMed  CAS  Google Scholar 

  34. Pacher, P., Csordas, P., Schneider, T., and Hajnoczky, G. (2000) Quantification of calcium signal transmission from sarco-endoplasmic reticulum to the mitochondria, J. Physiol. 529, 553–564.

    PubMed  CAS  Google Scholar 

  35. Vallot, O., Combettes, L., and Lompre, A. M. (2001) Functional coupling between the caffeine/ryanodine-sensitive Ca2+ store and mitochondria in rat aortic smooth muscle cells. Biochem. J. 357, 363–371.

    PubMed  CAS  Google Scholar 

  36. Kamishima, T. and Quayle, J. M. (2002) Mitochondrial Ca2+ uptake is important over low [Ca2+]i range in arterial smooth muscle. Am. J. Physiol. Herat Circ. Physiol. 283, H2431-H2439.

    CAS  Google Scholar 

  37. Prakash, Y. S., Kannan, M. S., and Sieck, G. C. (1997) Regulation of intracellular calcium oscillations in porcine tracheal smooth muscle cells. Am. J. Physiol. 272, C966-C975.

    PubMed  CAS  Google Scholar 

  38. Bergner, A. and Sanderson, M. J. (2002) ATP stimulates Ca2+ oscillations and contraction in airway smooth muscle cells of mouse lung slices. Am. J. Physiol. Lung Cell Mol. Physiol. 283, L1271-L1279.

    PubMed  CAS  Google Scholar 

  39. Ouedraogo, N., Marthan, R., and Roux, E. (2003) The effects of propofol and etomidate on airway contractility in chronically hypoxic rats. Anesth. Analg. 96, 1035–1041.

    PubMed  CAS  Google Scholar 

  40. Mounkaila, B., Marthan, R., and Roux, E. (2005) Biphasic effect of extracellular ATP on human and rat airways is due to multiple P2 purinoceptor activation. Resp. Res. 6, 143.

    Google Scholar 

  41. Roux, E., Noble, P. J., Noble, D., and Marhl, M. (2006) Modelling of calcium handling in airway myocytes. Prog. Biophys. Mol. Biol. 90, 64–87.

    PubMed  CAS  Google Scholar 

  42. DiFrancesco, D. and Noble, D. (1985) A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil. Trans. R. Soc. Lond. B Biol. Sci. 307, 353–398.

    CAS  Google Scholar 

  43. Vergara, C. and Latorre, R. (1983) Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar bilayers. Evidence for a Ca2+ and Ba2+ blockade. J. Gen. Physiol. 82, 543–568.

    PubMed  CAS  Google Scholar 

  44. Noble, D. (1999). Oxsoft Heart Program Manual. Oxsoft Ltd., Oxford, UK.

    Google Scholar 

  45. Janssen, L. J., Walters, D. K., and Wattie, J. (1997) Regulation of [Ca2+]i in canine airway smooth muscle by Ca(2+)-ATPase and Na+/Ca2+ exchange mechanisms. Am. J. Physiol. 273, L322-L330.

    PubMed  CAS  Google Scholar 

  46. Blaustein, M. P., Golovina, V. A., Song, H., Choate, J., Lencesova, L., Robinson, S. W., and Wier, W. G. (2002) Organization of Ca2+ stores in vascular smooth muscle: functional implications. Novartis Found. Symp 246, 125–137; discussion 137–141, 221–227.

    Article  PubMed  CAS  Google Scholar 

  47. Roux, E., Tupin, A.-L., and Marthan, R. Effect of Na−K ATPase inhibition on calcium homeostasis in rat airway myocytes. 5th UK Calcium Signalling Conference, 2003, Liverpool, UK.

  48. Ay, B., Prakash, Y. S., Pabelick, C. M., and Sieck, G. C. (2004) Store-operated Ca2+ entry in porcine airway smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 286, L909-L917.

    PubMed  CAS  Google Scholar 

  49. Helli, P. B., Pertens, E., and Janssen, L. J. (2005) Cyclopiazonic acid activates a Ca2+-permeable, nonselective cation conductance in porcine and bovine tracheal smooth muscle. J. Appl. Physiol. 99, 1759–1768.

    PubMed  CAS  Google Scholar 

  50. Haberichter, T., Roux, E., Marhl, M., and Mazat, J. (2002) The influence of different InsP(3) receptor isoforms on Ca(2+) signaling in tracheal smooth muscle cells. Bioelectrochemistry 57, 129.

    PubMed  CAS  Google Scholar 

  51. Hyvelin, J. M., Roux, E., Prevost, M. C., Savineau, J. P., and Marthan, R. (2000) Cellular mechanisms of acrolein-induced alteration in calcium signaling in airway smooth musles. Toxicol. Appl. Pharmacol. 164, 176–183.

    PubMed  CAS  Google Scholar 

  52. Li, Y. X. and Rinzel, J. (1994) Equations for Insp(3) receptor-mediated Ca2+ (I) oscillations derived from a detailed kinetic-model—a Hodgkin-Huxley like formalism. J. Theor. Biol. 166, 461–473.

    PubMed  CAS  Google Scholar 

  53. Moraru, I. I., Kaftan, E. J., Ehrlich, B. E., and Watras, J. (1999) Regulation of type 1 inositol 1,4,5-trisphosphategated calcium channels by InsP(3) and calcium—simulation of single channel kinetics based on ligand binding and electrophysiological analysis. J. Gen. Physiol. 113, 837–849.

    PubMed  CAS  Google Scholar 

  54. Hagar, R. E. and Ehrlich, B. E. (2000) Regulation of the type III InsP(3) receptor by InsP(3) and ATP. Biophys. J. 79, 271–278.

    PubMed  CAS  Google Scholar 

  55. Marin, J., Encabo, A., Briones, A., Garcia-Cohen, E. C., and Alonso, M. J. (1999) Mechanisms involved in the cellular calcium homeostasis in vascular smooth muscle: calcium pumps. Life Sci. 64, 279–303.

    PubMed  CAS  Google Scholar 

  56. Ogawa, Y., Kurebayashi, N., and Murayama, T. (2000) Putative roles of type 3 ryanodine receptor isoforms (RyR3). Trends Cardiovasc. Med. 10, 65–70.

    PubMed  CAS  Google Scholar 

  57. Schuster, M., Marhl, M., and Hofer, T. (2002) Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur. J. Biochem. 269, 1333–1355.

    PubMed  CAS  Google Scholar 

  58. Burdakov, D. and Verkhratsky, A. (2006) Biophysical re-equilibration of Ca2+ fluxes as a simple biologically plausible explanation for complex intracellular Ca2+ release patterns. FEBS Lett. 580, 463–468.

    PubMed  CAS  Google Scholar 

  59. Montano, L. M. and Bazan-Perkins, B. (2005) Resting calcium influx in airway smooth muscle. Can. J. Physiol. Pharmacol. 83, 717–723.

    PubMed  CAS  Google Scholar 

  60. Camello, C., Lomax, R., Petersen, O. H., and Tepikin, A. V. (2002) Calcium leak from intracellular stores—the enigma of calcium signalling. Cell Calcium 32, 355–361.

    PubMed  CAS  Google Scholar 

  61. Lytton, J., Westlin, M., Burk, S. E., Shull, G. E., and Maclennan, D. H. (1992) Functional comparisons between isoforms of the sarcoplasmic or endoplasmic-reticulum family of calcium pumps. J. Biol. Chem. 267, 14483–14489.

    PubMed  CAS  Google Scholar 

  62. Falcke, M. (2004) Reading the patterns in living cells—the of Ca2+ signaling. Adv. Phys. 53, 255–440.

    CAS  Google Scholar 

  63. Schuster, S., Marhl, M., and Hofer, T. (2002) Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur. J. Biochem. 269, 1333–1355.

    PubMed  CAS  Google Scholar 

  64. Babcock, D. F. and Hille, B. (1998) Mitochondrial oversight of cellular Ca2+ signaling. Curr. Opin. Neurobiol. 8, 398–404.

    PubMed  CAS  Google Scholar 

  65. Meyer, T. and Streyer, L. (1988) Molecular-model for receptor-stimulated calcium spiking. Proc. Natl. Acad. Sci. U.S.A. 85, 5051–5055.

    PubMed  CAS  Google Scholar 

  66. Pozzan, T., Rizzuto, R., Volpe, P., and Meldolesi, J. (1994) Molecular and Cellular Physiology of Intracellular Calcium Stores. Physiol. Rev. 74, 595–636.

    PubMed  CAS  Google Scholar 

  67. Jouaville, L. S., Ichas, F., Holmuhamedov, E. L., Camacho, P., and Lechleiter, J. D. (1995) Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377, 438–441.

    PubMed  CAS  Google Scholar 

  68. Rizzuto, R., Pinton, P., Brini, M., Chiesa, A., Filippin, L., and Pozzan, T. (1999) Mitochondria as biosensors of calcium microdomains. Cell Calcium 26, 193–199.

    PubMed  CAS  Google Scholar 

  69. Rutter, G. A. and Rizzuto, R. (2000) Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. Trends Biochem. Sci. 25, 215–221.

    PubMed  CAS  Google Scholar 

  70. Petersen, O. H., Petersen, C. C. H., and Kasai, H. (1994) Calcium and hormone action. Annu. Rev. Physiol. 56, 297–319.

    PubMed  CAS  Google Scholar 

  71. Hehl, S., Golard, A., and Hille, B. (1996) Involvement of mitochondria in intracellular calcium sequestration by rat gonadotropes. Cell Calcium 20, 515–524.

    PubMed  CAS  Google Scholar 

  72. Babcock, D. F., Herrington, J., Goodwin, P. C., Park, Y. B., and Hille, B. (1997) Mitochondrial participation in the intracellular Ca2+ network. J. Cell Biol. 136, 833–844.

    PubMed  CAS  Google Scholar 

  73. Simpson, P. B. and Russell, J. T. (1998) Role of mitochondrial Ca2+ regulation in neuronal and glial cell signalling. Brain Res. Rev. 26, 72–81.

    PubMed  CAS  Google Scholar 

  74. Simpson, P. B. and Russell, J. T. (1998) Mitochondrial Ca2+ uptake and release influence metabotropic and ionotropic cytosolic Ca2+ responses in rat oligodendrocyte progenitors. J. Physiol. (Lond) 508, 413–426.

    CAS  Google Scholar 

  75. Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., Tuft, R. A., and Pozzan, T. (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766.

    PubMed  CAS  Google Scholar 

  76. Drummond, R. M. and Fay, F. S. (1996) Mitochondria contribute to Ca2+ removal in smooth muscle cells. Pflugers Arch. 431, 473–482.

    PubMed  CAS  Google Scholar 

  77. Szado, T., Kuo, K. H., Bernard-Helary, K., Poburko, D., Lee, C. H., Seow, C., Ruegg, U. T., and van Breemen, C. (2003) Agonist-induced mitochondrial Ca2+ transients in smooth muscle. FASEB J. 17, 28–37.

    PubMed  CAS  Google Scholar 

  78. Marhl, M., Schuster, S., and Brumen, M. (1998) Mitochondria as an important factor in the maintenance of constant amplitudes of cytosolic calcium oscillations. Biophys. Chem. 2, 125–132.

    PubMed  CAS  Google Scholar 

  79. Haberichter, T., Marhl, M., and Heinrich, R. (2001) Birhythmicity, trirhythmicity and chaos in bursting calcium oscillations. Biophys. Chem. 90, 17–30.

    PubMed  CAS  Google Scholar 

  80. Grubelnik, V., Larsen, A. Z., Kummer, U., Olsen, L. F., and Marhl, M. (2001) Mitochondria regulate the amplitude of simple and complex calcium oscillations. Biophys. Chem. 94, 59–74.

    PubMed  CAS  Google Scholar 

  81. Marhl, M., Schuster, S., Brumen, M., and Heinrich, R. (1998) Modelling oscillations of calcium and endoplasmic reticulum transmembrane potential; role of the signalling and buffering proteins and of the size of the Ca2+ sequestering ER subcompartments. Bioelectrochem. Bioenerg. 46, 79–90.

    CAS  Google Scholar 

  82. Marhl, M., Haberichter, T., Brumen, M., and Heinrich, R. (2000) Complex calcium oscillations and the role of mitochondria and cytosolic proteins. Biosystems 57, 75–86.

    PubMed  CAS  Google Scholar 

  83. Ichas, F., Jouaville, L. S., Sidash, S. S., Mazat, J. P., and Holmuhamedov, E. L. (1994) Mitochondrial calcium spiking—a transduction mechanism-based on calcium-induced permeability transition involved in cell calcium signaling. FEBS Lett. 348, 211–215.

    PubMed  CAS  Google Scholar 

  84. Ichas, F., Jouaville, L. S., and Mazat, J. P. (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89, 1145–1153.

    PubMed  CAS  Google Scholar 

  85. Jouaville, L. S., Ichas, F., and Mazat, J. P. (1998) Modulation of cell calcium signals by mitochondria. Mol. Cell. Biochem. 184, 371–376.

    PubMed  CAS  Google Scholar 

  86. Huser, J., Rechenmamcher, C. E., and Blatter, L. A. (1998) Imaging the permeability pore transition in single mitochondria. Biophys. J. 74, 2129–2137.

    PubMed  CAS  Google Scholar 

  87. Falke, J. J., Drake, S. K., Hazard, A. L., and Peersen, O. B. (1994) Molecular tuning of ion binding to calcium signaling proteins. Q. Rev. Biophys. 27, 219–290.

    PubMed  CAS  Google Scholar 

  88. Smith, G. D., Wagner, J., and Keizer, J. (1996) Validity of the rapid buffering approximation near a point source of calcium ions. Biophys. J. 70, 2527–2539.

    PubMed  CAS  Google Scholar 

  89. Ideker, T. and Lauffenburger, D. (2003) Building with a scaffold: emerging strategies for high-to low-level cellular modeling. Trends Biotechnol. 21, 255–262.

    PubMed  CAS  Google Scholar 

  90. Tyson, J. J., Chen, K. C., and Novak, B. (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231.

    PubMed  CAS  Google Scholar 

  91. Zaslaver, A., Mayo, A. E., Rosenberg, R., Bashkin, P., Sberro, H., Tsalyuk, M., Surette, M. G., and Alon, U. (2004) Just-in-time transcription program in metabokic pathways. Nat. Genet. 36, 486–491.

    PubMed  CAS  Google Scholar 

  92. Schuster, S., Klipp, E., and Marhl, M. The predictive power of molecular network modelling—case studies of predictions with subsequent experimental verification. In Discovering Biomolecular Mechanisms with Computational Biology (Eisenhaber, F., ed.). Georgetown, Landes Bioscience, 2005, pp. 115–127.

    Google Scholar 

  93. Morel, J. L., Fritz, N., Lavie, J. L., and Mironneau, J. (2003) Crucial role of type 2 inositol 1,4,5-trisphosphate receptors for acetylcholine-induced Ca2+ oscillations in vascular myocytes. Arterioscler. Thromb. Vasc. Biol. 23, 1567–1575.

    PubMed  CAS  Google Scholar 

  94. Hai, C. M. and Murphy, R. A. (1998) Regulation of short-ening velocity by cross-bridge phosphorylation in smooth muscle. Am. J. Physiol. Cell Physiol 255, C86-C94.

    Google Scholar 

  95. Rembold, C. M. and Murphy, R. A. (1990) Latch-bridge model in smooth-muscle-[Ca2+]i can quantitatively predict stress. Am. J. Physiol. 259, C251-C257.

    PubMed  CAS  Google Scholar 

  96. Rembold, C. M., Wardle, R. L., Wingard, C. J., Batts, T. W., Etter, E. F., and Murphy, R. A. (2004) Cooperative attachment of cross bridges predicts regulation of smooth muscle force by myosin phosphorylation. Am. J. Physiol. Cell Physiol. 287, C594-C602.

    PubMed  CAS  Google Scholar 

  97. Hai, C.-M. and Kim, H. R. (2005) An expanded latch-bridge model of protein kinase C-mediated smooth muscle contraction. J. Appl. Physiol. 98, 1356–1365.

    PubMed  CAS  Google Scholar 

  98. Morgan, K. G. and Gangopadhyay, S. S. (2001) Invited review: cross-bridge regulation by thin filament-associated proteins. J. Appl. Physiol. 91, 953–962.

    PubMed  CAS  Google Scholar 

  99. Hai, C. M. and Szeto, B. (1992) Agonist-induced myosin phosphorylation during isometric contraction and unloaded shortening in airway smooth muscle. Am. J. Physiol. 262, L53-L62.

    PubMed  CAS  Google Scholar 

  100. Fajmut, A., Dobovisek, A., and Brumen, M. (2005) Mathematical modeling of the relation between myosin phosphorylation and stress development in smooth muscles. J. Chem. Inf. Model 45, 1610–1615.

    PubMed  CAS  Google Scholar 

  101. Kato, S., Osa, T., and Ogasawara, T.. (1984) Kinetic-model for isometric contraction in smooth-muscle on the basis of myosin phosphorylation hypothesis. Biophys. J. 46, 35–44.

    Article  PubMed  CAS  Google Scholar 

  102. Fajmut, A., Brumen, M., and Schuster, S. (2005) Theoretical model of the interactions between Ca2+, calmodulin and myosin light chain kinase. FEBS Lett. 579, 4361–4366.

    PubMed  CAS  Google Scholar 

  103. Noble, D. (2002) Modeling the heart—from genes to cells to the whole organ. Science 295, 1678–1682.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Roux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marhl, M., Noble, D. & Roux, E. Modeling of molecular and cellular mechanisms involved in Ca2+ signal encoding in airway myocytes. Cell Biochem Biophys 46, 285–302 (2006). https://doi.org/10.1385/CBB:46:3:285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:46:3:285

Index Entries

Navigation