Skip to main content
Log in

Flow-activated ion channels in vascular endothelium

  • Review
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The ability of vascular endothelial, cells (ECs) to respond to fluid mechanical forces associated with blood flow is essential for flow-mediated vasoregulation and arterial wall remodeling. Abnormalities in endothelial responses to flow also play a role in the development of atherosclerosis. Although our understanding of the endothelial signaling pathways stimulated by flow has greatly increased over the past two decades, the mechanisms by which ECs sense flow remain largely unknown. Activation of flow-sensitive ion channels is among the fastest known endothelial responses to flow; therefore, these ion channels have been proposed as candidate flow sensors. This review focuses on: 1) describing the various types of flow-sensitive ion channels that have been reported in ECs, 2) discussing the implications of activation of these ion channels for endothelial function, and 3) proposing candidate mechanisms for activation of flow-sensitive ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langille, B. L. and O'Donnell, F. (1986) Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231, 405–407.

    Article  PubMed  CAS  Google Scholar 

  2. Pohl, U., Holtz, J., Busse, R., and Bassenge, E. (1986) Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8, 37–44.

    PubMed  CAS  Google Scholar 

  3. Ku, D. N., Giddens, D. P., Zarins, C. K., and Glagov, S. (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5, 293–302.

    PubMed  CAS  Google Scholar 

  4. Nerem, R. M. (1992) Vascular fluid mechanics, the arterial wall, and atherosclerosis. J. Biomech. Eng. 114, 274–282.

    PubMed  CAS  Google Scholar 

  5. Barakat, A. and Lieu, D. (2003) Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochem. Biophys. 38, 323–343.

    Article  PubMed  CAS  Google Scholar 

  6. Cunningham, K. S. and Gotlieb, A. I. (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab. Invest. 85, 9–23.

    Article  PubMed  CAS  Google Scholar 

  7. Dai, G., Kaazempur-Mofrad, M. R., Natarajan, S., Zhang, Y., Vaughn, S., Blackman, B. R., Kamm, R. D., Garcia-Cardena, G., and Gimbrone, M. A., Jr. (2004) Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and resistant regions of human vasculature. Proc. Natl. Acad. Sci. U. S. A. 101, 14871–14876.

    Article  PubMed  CAS  Google Scholar 

  8. Passerini, A. G., Polacek, D. C., Shi, C., Francesco, N. M., Manduchi, E., Grant, G. R., Pritchard, W. F., Powell, S., Chang, G. Y., Stoeckert, C. J., Jr., and Davies, P. F. (2004) Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc. Natl. Acad. Sci. U. S. A. 101, 2482–2487.

    Article  PubMed  CAS  Google Scholar 

  9. Tedgui, A. and Mallat, Z. (2001) Anti-inflammatory mechanisms in the vascular wall. Circ. Res. 88, 877–887.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, C. S., Tan, J., and Tien, J. (2004) Mechanotransduction at cell-matrix and cell-cell contacts. Annu. Rev. Biomed. Eng. 6, 275–302.

    Article  PubMed  CAS  Google Scholar 

  11. Davies, P. F. (1995) Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560.

    PubMed  CAS  Google Scholar 

  12. Garcia-Cardena, G., Comander, J., Anderson, K. R., Blackman, B. R., and Gimbrone, M. A., Jr. (2001) Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl. Acad. Sci. U. S. A. 98, 4478–4485.

    Article  PubMed  CAS  Google Scholar 

  13. Huang, H., Kamm, R. D., and Lee, R. T. (2004) Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287, C1-C11.

    Article  PubMed  CAS  Google Scholar 

  14. Janmey, P. A. and Weitz, D. A. (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem. Sci. 29, 364–370.

    Article  PubMed  CAS  Google Scholar 

  15. Lehoux, S., Castier, Y., and Tedgui, A. (2006) Molecular mechanisms of the vascular responses to haemodynamic forces. J. Intern. Med. 259, 381–392.

    Article  PubMed  CAS  Google Scholar 

  16. Li, Y. S., Haga, J. H., and Chien, S. (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38, 1949–1971.

    Article  PubMed  Google Scholar 

  17. Tarbell, J. M., Weinbaum, S., and Kamm, R. D. (2005) Cellular fluid mechanics and mechanotransduction. Ann. Biomed. Eng. 33, 1719–1723.

    Article  PubMed  Google Scholar 

  18. Barakat, A. I., Lieu, D. K., and Gojova, A. (2006) Secrets of the code: do vascular endothelial cells use ion channels to decipher complex flow signals? Biomaterials 27, 671–678.

    Article  PubMed  CAS  Google Scholar 

  19. Olesen, S. P., Clapham, D. E., and Davies, P. F. (1988) Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331, 168–170.

    Article  PubMed  CAS  Google Scholar 

  20. Nakache, M. and Gaub, H. E. (1988) Hydrodynamic hyperpolarization of endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 85, 1841–1843.

    Article  PubMed  CAS  Google Scholar 

  21. Jacobs, E. R., Cheliakine, C., Gebremedhin, D., Birks, E. K., Davies, P. F., and Harder, D. R. (1995) Shear activated channels in cell-attached patches of cultured bovine aortic endothelial cells. Pflugers Arch. 431, 129–131.

    Article  PubMed  CAS  Google Scholar 

  22. Lieu, D. K., Pappone, P. A., and Barakat, A. I. (2004) Differential membrane potential and ion current responses to different types of shear stress in vascular endothelial cells. Am. J. Physiol. Cell Physiol. 286, C1367-C1375.

    Article  PubMed  CAS  Google Scholar 

  23. Forsyth, S. E., Hoger, A., and Hoger, J. H. (1997) Molecular cloning and expression of a bovine endothelial inward rectifier potassium channel. FEBS Lett. 409, 277–282.

    Article  PubMed  CAS  Google Scholar 

  24. Hoger, J. H., Ilyin, V. I., Forsyth, S., and Hoger, A. (2002) Shear stress regulates the endothelial Kir2.1 ion channel. Proc. Natl. Acad. Sci. U. S. A. 99, 7780–7785.

    Article  PubMed  CAS  Google Scholar 

  25. Chatterjee, S., Al-Mehdi, A. B., Levitan, I., Stevens, T., and Fisher, A. B. (2003) Shear stress increases expression of a KATP channel in rat and bovine pulmonary vascular endothelial cells. Am. J. Physiol. Cell Physiol. 285, C959-C967.

    PubMed  CAS  Google Scholar 

  26. Brakemeier, S., Kersten, A., Eichler, I., Grgic, I., Zakrzewicz, A., Hopp, H., Kohler, R., and Hoyer, J. (2003) Shear stress-induced up-regulation of the intermediate-conductance Ca2+-activated K+ channel in human endothelium. Cardiovasc. Res. 60, 488–496.

    Article  PubMed  CAS  Google Scholar 

  27. Barakat, A. I., Leaver, E. V., Pappone, P. A., and Davies, P. F. (1999) A flow-activated chloride-selective membrane current in vascular endothelial cells. Circ. Res. 85, 820–828.

    PubMed  CAS  Google Scholar 

  28. Nakao, M., Ono, K., Fujisawa, S., and Lijima, T. (1999) Mechanical stress-induced Ca2+ entry and Cl current in cultured human aortic endothelial cells. Am. J. Physiol. Cell Physiol. 276, C238-C249.

    CAS  Google Scholar 

  29. Romanenko, V. G., Davies, P. F., and Levitan, I. (2002) Dual effect of fluid shear stress on volume-regulated anion current in bovine aortic endothelial cells. Am. J. Physiol. Cell Physiol. 282, C708-C718.

    PubMed  CAS  Google Scholar 

  30. Levitan, I., Christian, A. E., Tulenko, T. N., and Rothblat, G. H. (2000) Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J. Gen. Physiol. 115, 405–416.

    Article  PubMed  CAS  Google Scholar 

  31. Schwarz, G., Droogmans, G., and Nilius, B. (1992) Shear stress induced membrane currents and calcium transients in human vascular endothelial cells. Pflugers Arch. 421, 394–396.

    Article  PubMed  CAS  Google Scholar 

  32. Jow, F. and Numann, R. (1999) Fluid flow modulates calcium entry and activates membrane currents in cultured human aortic endothelial cells. J. Membr. Biol. 171, 127–139.

    Article  PubMed  CAS  Google Scholar 

  33. Yamamoto, K., Korenaga, R., Kamiya, A., and Ando, J. (2000) Fluid shear stress activates Ca2+ influx into human end othelial cells via P2X4 purinoceptors. Circ. Res. 87, 385–391.

    PubMed  CAS  Google Scholar 

  34. Yamamoto, K., Sokabe, T., Ohura, N., Nakatsuka, H., Kamiya, A., and Ando, J. (2003) Endogenously released ATP mediates shear stress-induced Ca2+ influx into pulmonary artery endothelial cells. Am. J. Physiol. Cell Physiol. 285, H793-H803.

    CAS  Google Scholar 

  35. Carattino, M. D., Sheng, S., and Kleyman, T. R., (2004) Epithelial Na+ channels are activated by laminar shear stress. J. Biol. Chem. 279, 4120–4126.

    Article  PubMed  CAS  Google Scholar 

  36. Satlin, L. M., Sheng, S., Woda, C. B., and Kleyman, T. R. (2001) Epithelial Na+ channels are regulated by flow. Am. J. Physiol. Cell Physiol. 280, F1010-F1018.

    CAS  Google Scholar 

  37. Moccia, F., Villa, A., and Tanzi, F. (2000) Flow-activated Na+ and K+ Current in cardiac microvascular endothelial cells. J. Mol. Cell. Cardiol. 32, 1589–1593.

    Article  PubMed  CAS  Google Scholar 

  38. Cooke, J. P., Rossitch, E., Jr., Andon, N. A., Loscalzo, J., and Dzau, V. J. (1991) Flow activates an endothelial potassium channel to release an endogeneous nitrovasodilator. J. Clin. Invest. 88, 1663–1671.

    PubMed  CAS  Google Scholar 

  39. Ohno, M., Gibbons, G. H., Dzau, V. J., and Cooke, J. P. (1993) Shear stress elevates endothelial cGMP. Role of a potassium channel and G protein coupling. Circulation 88, 193–197.

    PubMed  CAS  Google Scholar 

  40. Ohno, M., Cooke, J. P., Dzau, V. J., and Gibbons, G. H. (1995) Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J. Clin. Invest. 95, 1363–1369.

    PubMed  CAS  Google Scholar 

  41. Uematsu, M., Ohara, Y., Navas, J. P., Nishida, K., Murphy, T. J., Alexander, R. W., Nerem, R. M., and Harrison, D. G. (1995) Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am. J. Physiol. Cell Physiol. 269, C1371-C1378.

    CAS  Google Scholar 

  42. Malek, A. M. and Izumo, S. (1994) Molecular aspects of signal transduction of shear stress in the endothelial cell. J. Hypertens. 12, 989–999.

    Article  PubMed  CAS  Google Scholar 

  43. Traub, O., Ishida, T., Ishida, M., Tupper, J. C., and Berk, B. C. (1999) Shear stress-mediated extracellular signal-regulated kinase activation is regulated by sodium in endothelial cells. Potential role for a voltage-dependent sodium channel. J. Biol. Chem. 274, 20144–20150.

    Article  PubMed  CAS  Google Scholar 

  44. Suvatne, J., Barakat, A. I., and O'Donnell, M. E. (2001) Flow-induced expression of endothelial Na−K−Cl cotransport: dependence on K+ and Cl channels. Am. J. Physiol. Cell Physiol. 280, C216-C227.

    PubMed  CAS  Google Scholar 

  45. Gojova, A. and Barakat, A. I. (2005) Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. J. Appl. Physiol. 98, 2355–2362.

    Article  PubMed  Google Scholar 

  46. Berridge, M. J., Bootman, M. D., and Roderick, H. L. (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529.

    Article  PubMed  CAS  Google Scholar 

  47. Hoyer, J., Kohler, R., and Distler, A. (1998) Mechanosensitive Ca2+ oscillations and STOC activation in endothelial cells. FASEB J. 12, 359–366.

    PubMed  CAS  Google Scholar 

  48. Denk, W., Holt, J. R., Shepherd, G. M., and Corey, D. P. (1995) Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 15, 1311–1321.

    Article  PubMed  CAS  Google Scholar 

  49. Fettiplace, R. and Hackney, C. M. (2006) The sensory and motor roles of auditory hair cells. Nat. Rev. Neurosci. 7, 19–29.

    Article  PubMed  CAS  Google Scholar 

  50. Hudspeth, A. J. (1989) How the ear's works work. Nature 341, 397–404.

    Article  PubMed  CAS  Google Scholar 

  51. Barakat, A. I. (2001) A model for shear stress-induced deformation of a flow sensor on the surface of vascular endothelial cells. J. theor. Biol. 210, 221–236.

    Article  PubMed  CAS  Google Scholar 

  52. Hamill, O. P. and Martinac, B. (2001) Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740.

    PubMed  CAS  Google Scholar 

  53. Bilston, L. E. and Mylvaganam, K. (2002) Molecular simulations of the large conductance mechanosensitive (MscL) channel under mechanical loading. FEBS Lett. 512, 185–190.

    Article  PubMed  CAS  Google Scholar 

  54. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T., and Rees, D. C. (1998) Structure of the MscL homolog, from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226.

    Article  PubMed  CAS  Google Scholar 

  55. Gullingsrud, J., Kosztin, D., and Schulten, K. (2001) Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys. J. 80, 2074–2081.

    PubMed  CAS  Google Scholar 

  56. Fung, Y. C., and Liu, S. Q. (1993) Elementary mechanics of the endothelium of blood vessels. J. Biomech. Eng. 115, 1–12.

    PubMed  CAS  Google Scholar 

  57. Moe, P. and Blount, P. (2005) Assessment of potential stimuli for mechano-dependent gating of MscL: effects of pressure, tension, and lipid headgroups. Biochemistry 44, 12239–12244.

    Article  PubMed  CAS  Google Scholar 

  58. Sukharev, S. (1999) Mechanosensitive channels in bacteria as membrane tension reporters. FASEB J. 13, S55-S61.

    PubMed  CAS  Google Scholar 

  59. Charras, G. T., Williams, B. A., Sims, S. M., and Horton, M. A. (2004) Estimating the sensitivity of mechanosensitive ion channels to membrane strain and tension. Biophys. J. 87, 2870–2884.

    Article  PubMed  CAS  Google Scholar 

  60. Butler, P. J., Norwich, G., Weinbaum, S., and Chien, S. (2001) Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity. Am. J. Physiol. Cell Physiol. 280, C962-C969.

    PubMed  CAS  Google Scholar 

  61. Haidekker, M. A., L'Heureux, N., and Frangos, J. A. (2000) Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am. J. Physiol. Cell Physiol. 278, H1401-H1406.

    CAS  Google Scholar 

  62. Romanenko, V. G., Rothblat, G. H., and Levitan, I. (2002) Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol. Biophys. J. 83, 3211–3222.

    Article  PubMed  CAS  Google Scholar 

  63. Li, X. A., Everson, W. V., and Smart, E. J. (2005) Caveolae, lipid rafts, and vascular disease. Trends Cardiovasc Med. 15, 92–96.

    Article  PubMed  CAS  Google Scholar 

  64. Simons, K. and Ehehalt, R. (2002) Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110, 597–603.

    Article  PubMed  CAS  Google Scholar 

  65. Simons, K. and Toomre, D. (2000) Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.

    Article  PubMed  CAS  Google Scholar 

  66. Yang, B., Oo, T. N., and Rizzo, V. (2006) Lipid rafts mediate H2O2 prosurvival effects in cultured endothelial cells. FASEB J. 20, 1501–1503.

    Article  PubMed  CAS  Google Scholar 

  67. Thi, M. M., Tarbell, J. M., Weinbaum, S., and Spray, D. C. (2004) The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc. Natl. Acad. Sci. U. S. A. 101, 16483–16488.

    Article  PubMed  CAS  Google Scholar 

  68. Weinbaum, S., Zhang, X., Han, Y., Vink, H., and Cowin, S. C. (2003) Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl. Acad. Sci. U. S. A. 100, 7988–7995.

    Article  PubMed  CAS  Google Scholar 

  69. Sachs, F. and Morris, C. E. (1998) Mechanosensitive ion channels in nonspecialized cells. Rev. Physiol. Biochem. Pharmacol. 132, 1–77.

    Article  PubMed  CAS  Google Scholar 

  70. Hamill, O. P. and McBride, D. W., Jr. (1997) Mechanogated channels in Xenopus oocytes: different gating modes enable a channel to switch from a phasic to a tonic mechanotransducer. Biol. Bull. 192, 121–122.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang, Q., Matsuzaki, I., Chatterjee, S., and Fisher, A. B. (2005) Activation of endothelial NADPH oxidase during normoxic lung ischemia is KATP channel dependent. Am. J. Physiol. Lung Cell Mol. Physiol. 289, L954-L961.

    Article  PubMed  CAS  Google Scholar 

  72. Matsuzaki, I., Chatterjee, S., Debolt, K., Manevich, Y., Zhang, Q., and Fisher, A. B. (2005) Membrane depolarization and NADPH oxidase activation in aortic endothelium during ischemia reflect altered mechanotransduction. Am. J. Physiol. Heart Circ. Physiol. 288, H336-H343.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul I. Barakat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gautam, M., Gojova, A. & Barakat, A.I. Flow-activated ion channels in vascular endothelium. Cell Biochem Biophys 46, 277–284 (2006). https://doi.org/10.1385/CBB:46:3:277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:46:3:277

Index Entries

Navigation