Skip to main content
Log in

Analysis of peptide/MHC-induced TCR downregulation

Deciphering the triggering kinetics

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The interaction of T0lymphocytes with antigen-presenting cells displaying a small number of specific peptide/major histocompatibility complexes results in the downregulation of a large number of T-cell receptors (TCR), suggesting serial TCR triggering. However, the details of TCR downregulation are controversial. In particular, the level of comodulation of nonengaged TCR reported by different authors ranges from essentially none to considerable levels. Here, we address this controversy using complementary experimental and mathematical techniques. We find that TCR downregulation is very rapid during the first 2–4 min after T-cell antigen-presenting cells contact formation. After this phase, TCR downregulation proceeds at a relatively slow rate. Statistical and computational analyses show that this pronounced change in downregulation kinetics is compatible with the notion of initial serial triggering of clustered TCR followed by serial triggering of individual TCR. We further propose a compatible mechanism for concurrent triggering of multiple TCR by a single peptide/major histocompatibility complex. We provide a unified picture of productive TCR engagement and downregulation in which TCR triggering characteristics evolve from an initial cooperative phase to a sustained phase of signal accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valitutti, S., Muller, S., Cella, M., Padovan, E., and Lanzavecchia, A. (1995) Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151.

    Article  PubMed  CAS  Google Scholar 

  2. Valitutti, S., Muller, S., Salio, M., and Lanzavecchia, A. (1997) Degradation of T cell receptor (TCR)-CD3-zeta complexes after antigenic stimulation. J. Exp. Med. 185, 1859–1864.

    Article  PubMed  CAS  Google Scholar 

  3. Itoh, Y., Hemmer, B., Martin, R., and Germain, R. N. (1999) Serial TCR engagement and down-modulation by peptide: MHC molecule ligands: relationship to the quality of individual TCR signaling events. J. Immunol. 162, 2073–2080.

    PubMed  CAS  Google Scholar 

  4. Hudrisier, D., Kessler, B., Valitutti, S., Horvath, C., Cerottini, J. C., and Luescher, I. F. (1998) The efficiency of antigen recognition by CD8+CTL clones is determined by the frequency of serial TCR engagement. J. Immunol. 161, 553–562.

    PubMed  CAS  Google Scholar 

  5. Ding, Y. H., Baker, B. M., Garboczi, D. N., Biddison, W. E., and Wiley, D. C. (1999) Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 11, 45–56.

    Article  PubMed  CAS  Google Scholar 

  6. Kalergis, A. M., and Nathenson, S. G. (2000) Altered peptide ligand-mediated TCR antagonism can be modulated by a change in a single amino acid residue within the CDR3 beta of an MHC class I-restricted TCR. J. Immunol. 165, 280–285.

    PubMed  CAS  Google Scholar 

  7. Kalergis, A. M., Boucheron, N., Doucey, M. A., et al. (2001) Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nat. Immunol. 2, 229–234.

    Article  PubMed  CAS  Google Scholar 

  8. Holler, P. D., and Kranz, D. M. (2003) Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity 18, 255–264.

    Article  PubMed  CAS  Google Scholar 

  9. Coombs, D., Kalergis, A. M., Nathenson, S. G., Wofsy, C., and Goldstein, B. (2002) Activated TCRs remain marked for internalization after dissociation from pMHC. Nat. Immunol. 3, 926–931.

    Article  PubMed  CAS  Google Scholar 

  10. Reay, P. A., Matsui, K., Haase, K., Wulfing, C., Chien, Y. H. and Davis, M. M. (2000) Determination of the relationship between T cell responsiveness and the number of MHC-peptide complexes using specific monoclonal antibodies. J. Immunol. 164, 5626–5634.

    PubMed  CAS  Google Scholar 

  11. Irvine, D. J., Purbhoo, M. A., Krogsgaard, M., and Davis, M. M. (2002) Direct observation of ligand recognition by T cells. Nature 419, 845–849.

    Article  PubMed  CAS  Google Scholar 

  12. Gonzalez, P. A., Carreno, L. J., Coombs, D., et al. (2005) T cell receptor binding kinetics required for T cell activation depend on the density of cognate ligand on the antigen-presenting cell. Proc. Natl. Acad. Sci. USA 102, 4824–4829.

    Article  PubMed  CAS  Google Scholar 

  13. Wofsy, C., Coombs, D., and Goldstein, B. (2001) Calculations show substantial serial engagement of T cell receptors. Biophys. J. 80, 606–612.

    PubMed  CAS  Google Scholar 

  14. Schrum, A. G., and Turka, L. A. (2002) The proliferative capacity of individual naive CD4(+) T cells is amplified by prolonged T cell antigen receptor triggering. J. Exp. Med. 196, 793–803.

    Article  PubMed  CAS  Google Scholar 

  15. Stotz, S. H., Bolliger, L., Carbone, F. R., and Palmer, E. (1999) T cell receptor (TCR) antagonism without a negative signal: evidence from T cell hybridomas expressing two independent TCRs. J. Exp. Med. 189, 253–264.

    Article  PubMed  CAS  Google Scholar 

  16. Saito, T., and Germain, R. N. (1987) Predictable acquisition of a new MHC recognition specificity following expession of a transfected T-cell receptor beta-chain gene. Nature 329, 256–259.

    Article  PubMed  CAS  Google Scholar 

  17. Padovan, E., Casorati, G., Dellabona, P., Meyer, S., Brockhaus, M., and Lanzavecchia, A. (1993) Expression of two T cell receptor alpha chains: dual receptor T cells. Science 262, 422–424.

    Article  PubMed  CAS  Google Scholar 

  18. Cresswell, P. (1994) Assembly, transport, and function of MHC class II molecules. Annu. Rev. Immunol. 12, 259–293.

    Article  PubMed  CAS  Google Scholar 

  19. Gladow, M., Uckert, W., and Blankenstein, T. (2004) Dual T cell receptor T cells with two defined specificities mediate tumor suppression via both receptors. Eur. J. Immunol. 34, 1882–1891.

    Article  PubMed  CAS  Google Scholar 

  20. Exley, M., Wileman, T., Mueller, B., and Terhorst, C. (1995) Evidence for multivalent structure of T-cell antigen receptor complex. Mol. Immunol. 32, 829–839.

    Article  PubMed  CAS  Google Scholar 

  21. Niedergang, F., Dautry-Varsat, A., and Alcover, A. (1997) Peptide antigen or superantigen-induced downregulation of TCRs involves both stimulated and unstimulated receptors. J. Immunol. 159, 1703–1710.

    PubMed  CAS  Google Scholar 

  22. San Jose, E., Borroto, A., Niedergang, F., Alcover, A., and Alarcon, B. (2000) Triggering the TCR complex causes the downregulation of nonengaged receptors by a signal transduction-dependent mechanism. Immunity 12, 161–170.

    Article  PubMed  CAS  Google Scholar 

  23. Bonefeld, C. M., Rasmussen, A. B., Lauritsen, J. P., et al. (2003) TCR comodulation of nonengaged TCR takes place by a protein kinase C and CD3 gamma di-leucine-based motif-dependent mechanism. J. Immunol. 171, 3003–3009.

    PubMed  CAS  Google Scholar 

  24. Punt, J. A., Roberts, J. L., Kearse, K. P., and Singer, A. (1994) Stoichiometry of the T cell antigen receptor (TCR) complex: each TCR/CD3 complex contains one TCR alpha, one TCR beta, and two CD3 epsilon chains. J. Exp. Med. 180, 587–593.

    Article  PubMed  CAS  Google Scholar 

  25. Call, M. E., Pyrdol, J., Wiedmann, M., and Wucherpfennig, K. W. (2002) The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111, 967–979.

    Article  PubMed  CAS  Google Scholar 

  26. Call, M. E., Pyrdol, J., and Wucherpfennig, K. W. (2004) Stoichiometry of the T-cell receptor-CD3 complex and key intermediates assembled in the endoplasmic reticulum. EMBO J. 23, 2348–2357.

    Article  PubMed  CAS  Google Scholar 

  27. Fernandez-Miguel, G., Alarcon, B., Iglesias, A., et al. (1999) Multivalent structure of an alphabetaT cell receptor. Proc. Natl. Acad. Sci. USA 96, 1547–1552.

    Article  PubMed  CAS  Google Scholar 

  28. Drevot, P., Langlet, C., Guo, X. J., et al. (2002) TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21, 1899–1908.

    Article  PubMed  CAS  Google Scholar 

  29. Dumont, C., Blanchard, N., Di Bartolo, V., et al. (2002) TCR/CD3 down-modulation and zeta degradation are regulated by ZAP-70. J. Immunol. 169, 1705–1712.

    PubMed  CAS  Google Scholar 

  30. Blanchard, N., Lankar, D., Faure, F., et al. (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J. Immunol. 168, 3235–3241.

    PubMed  CAS  Google Scholar 

  31. Kastrup, J., Lauritsen, J. P., Menne, C., Dietrich, J., and Geisler, C. (2000) The phosphatase domains of CD45 are required for ligand induced T-cell receptor downregulation. Scand. J. Immunol. 51, 491–496.

    Article  PubMed  CAS  Google Scholar 

  32. Penna, D., Muller, S., Martinon, F., Demotz, S., Iwashima, M., and Valitutti, S. (1999) Degradation of ZAP-70 following antigenic stimulation in human T lymphocytes: role of calpain proteolytic pathway. J. Immunol. 163, 50–56.

    PubMed  CAS  Google Scholar 

  33. Leupin, O., Zaru, R., Laroche, T., Muller, S., and Valitutti, S. (2000) Exclusion of CD45 from the T-cell receptor signaling area in antigen-stimulated T lymphocytes. Curr. Biol. 10, 277–280.

    Article  PubMed  CAS  Google Scholar 

  34. Freiberg, B. A., Kupfer, H., Maslanik, W., et al. (2002) Staging and resetting T cell activation in SMACs. Nat. Immunol. 3, 911–917.

    Article  PubMed  CAS  Google Scholar 

  35. Abastado, J. P., Lone, Y. C., Casrouge, A., Boulot, G., and Kourilsky, P. (1995) Dimerization of soluble major histocompatibility complex-peptide complexes is sufficient for activation of T cell hybridoma and induction of unresponsiveness. J. Exp. Med. 182, 439–447.

    Article  PubMed  CAS  Google Scholar 

  36. Hamad, A. R., O'Herrin, S. M., Lebowitz, M. S., et al. (1998) Potent T cell activation with dimeric peptide-major histocompatibility complex class II ligand: the role of CD4 coreceptor. J. Exp. Med. 188, 1633–1640.

    Article  PubMed  CAS  Google Scholar 

  37. Boniface, J. J., Rabinowitz, J. D., Wulfing, C., et al. (1998) Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands [corrected]. Immunity 9, 459–466.

    Article  PubMed  CAS  Google Scholar 

  38. Cochran, J. R., Cameron, T. O., and Stern, L. J. (2000) The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12, 241–250.

    Article  PubMed  CAS  Google Scholar 

  39. Chan, C., George, A. J. T., and Stark, J. (2003) T cell sensitivity and specificity-kinetic proofreading revisited. Disc. Cont. Dyn. Sys. Ser. B 3, 343–360.

    Google Scholar 

  40. Grakoui, A., Bromley, S. K., Sumen, C., et al. (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227.

    Article  PubMed  CAS  Google Scholar 

  41. Chao, N. M., Young, S. H., and Poo, M. M. (1981) Localization of cell membrane components by surface diffusion into a “trap”. Biophys. J. 36, 139–153.

    PubMed  CAS  Google Scholar 

  42. Wooldridge, L., van den Berg, H. A., Glick, M., et al. (2005) Interaction between the CD8 coreceptor and major historcompatibility complex class I stabilizes T cell receptorantigen complexes at the cell surface. J. Biol. Chem. 280, 27491–27501.

    Article  PubMed  CAS  Google Scholar 

  43. McKeithan, T. W. (1995) Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci. USA 92, 5042–5046.

    Article  PubMed  CAS  Google Scholar 

  44. Wulfing, C., Sumen, C., Sjaastad, M. D., Wu, L. C., Dustin, M. L., and Davis, M. M. (2002) Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat. Immunol. 3, 42–47.

    Article  PubMed  CAS  Google Scholar 

  45. Sousa, J., and Carneiro, J. (2000) A mathematical analysis of TCR serial triggering and down-regulation. Eur. J. Immunol. 30, 3219–3227.

    Article  PubMed  CAS  Google Scholar 

  46. Niedergang, F., Dautry-Varsat, A., and Alcover, A. (1998) Cooperative activation of TCRs by enterotoxin superantigens. J. Immunol. 161, 6054–6058.

    PubMed  CAS  Google Scholar 

  47. Burroughs, N. J., and Wulfing, C. (2002) Differential segregation in a cell-cell contact interface: the dynamics of the immunological synapse. Biophys. J. 83, 1784–1796.

    Article  PubMed  CAS  Google Scholar 

  48. Schamel, W. W., Risueno, S. M., Minguet, S., et al. (2006) A conformation-and avidity-based proofreading mechanism for the TCR-CD3 complex. Trends Immunol 27, 176–182.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Coombs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utzny, C., Coombs, D., Müller, S. et al. Analysis of peptide/MHC-induced TCR downregulation. Cell Biochem Biophys 46, 101–111 (2006). https://doi.org/10.1385/CBB:46:2:101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:46:2:101

Index Entries

Navigation