Abstract
The interaction of T0lymphocytes with antigen-presenting cells displaying a small number of specific peptide/major histocompatibility complexes results in the downregulation of a large number of T-cell receptors (TCR), suggesting serial TCR triggering. However, the details of TCR downregulation are controversial. In particular, the level of comodulation of nonengaged TCR reported by different authors ranges from essentially none to considerable levels. Here, we address this controversy using complementary experimental and mathematical techniques. We find that TCR downregulation is very rapid during the first 2–4 min after T-cell antigen-presenting cells contact formation. After this phase, TCR downregulation proceeds at a relatively slow rate. Statistical and computational analyses show that this pronounced change in downregulation kinetics is compatible with the notion of initial serial triggering of clustered TCR followed by serial triggering of individual TCR. We further propose a compatible mechanism for concurrent triggering of multiple TCR by a single peptide/major histocompatibility complex. We provide a unified picture of productive TCR engagement and downregulation in which TCR triggering characteristics evolve from an initial cooperative phase to a sustained phase of signal accumulation.
Similar content being viewed by others
References
Valitutti, S., Muller, S., Cella, M., Padovan, E., and Lanzavecchia, A. (1995) Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151.
Valitutti, S., Muller, S., Salio, M., and Lanzavecchia, A. (1997) Degradation of T cell receptor (TCR)-CD3-zeta complexes after antigenic stimulation. J. Exp. Med. 185, 1859–1864.
Itoh, Y., Hemmer, B., Martin, R., and Germain, R. N. (1999) Serial TCR engagement and down-modulation by peptide: MHC molecule ligands: relationship to the quality of individual TCR signaling events. J. Immunol. 162, 2073–2080.
Hudrisier, D., Kessler, B., Valitutti, S., Horvath, C., Cerottini, J. C., and Luescher, I. F. (1998) The efficiency of antigen recognition by CD8+CTL clones is determined by the frequency of serial TCR engagement. J. Immunol. 161, 553–562.
Ding, Y. H., Baker, B. M., Garboczi, D. N., Biddison, W. E., and Wiley, D. C. (1999) Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 11, 45–56.
Kalergis, A. M., and Nathenson, S. G. (2000) Altered peptide ligand-mediated TCR antagonism can be modulated by a change in a single amino acid residue within the CDR3 beta of an MHC class I-restricted TCR. J. Immunol. 165, 280–285.
Kalergis, A. M., Boucheron, N., Doucey, M. A., et al. (2001) Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nat. Immunol. 2, 229–234.
Holler, P. D., and Kranz, D. M. (2003) Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity 18, 255–264.
Coombs, D., Kalergis, A. M., Nathenson, S. G., Wofsy, C., and Goldstein, B. (2002) Activated TCRs remain marked for internalization after dissociation from pMHC. Nat. Immunol. 3, 926–931.
Reay, P. A., Matsui, K., Haase, K., Wulfing, C., Chien, Y. H. and Davis, M. M. (2000) Determination of the relationship between T cell responsiveness and the number of MHC-peptide complexes using specific monoclonal antibodies. J. Immunol. 164, 5626–5634.
Irvine, D. J., Purbhoo, M. A., Krogsgaard, M., and Davis, M. M. (2002) Direct observation of ligand recognition by T cells. Nature 419, 845–849.
Gonzalez, P. A., Carreno, L. J., Coombs, D., et al. (2005) T cell receptor binding kinetics required for T cell activation depend on the density of cognate ligand on the antigen-presenting cell. Proc. Natl. Acad. Sci. USA 102, 4824–4829.
Wofsy, C., Coombs, D., and Goldstein, B. (2001) Calculations show substantial serial engagement of T cell receptors. Biophys. J. 80, 606–612.
Schrum, A. G., and Turka, L. A. (2002) The proliferative capacity of individual naive CD4(+) T cells is amplified by prolonged T cell antigen receptor triggering. J. Exp. Med. 196, 793–803.
Stotz, S. H., Bolliger, L., Carbone, F. R., and Palmer, E. (1999) T cell receptor (TCR) antagonism without a negative signal: evidence from T cell hybridomas expressing two independent TCRs. J. Exp. Med. 189, 253–264.
Saito, T., and Germain, R. N. (1987) Predictable acquisition of a new MHC recognition specificity following expession of a transfected T-cell receptor beta-chain gene. Nature 329, 256–259.
Padovan, E., Casorati, G., Dellabona, P., Meyer, S., Brockhaus, M., and Lanzavecchia, A. (1993) Expression of two T cell receptor alpha chains: dual receptor T cells. Science 262, 422–424.
Cresswell, P. (1994) Assembly, transport, and function of MHC class II molecules. Annu. Rev. Immunol. 12, 259–293.
Gladow, M., Uckert, W., and Blankenstein, T. (2004) Dual T cell receptor T cells with two defined specificities mediate tumor suppression via both receptors. Eur. J. Immunol. 34, 1882–1891.
Exley, M., Wileman, T., Mueller, B., and Terhorst, C. (1995) Evidence for multivalent structure of T-cell antigen receptor complex. Mol. Immunol. 32, 829–839.
Niedergang, F., Dautry-Varsat, A., and Alcover, A. (1997) Peptide antigen or superantigen-induced downregulation of TCRs involves both stimulated and unstimulated receptors. J. Immunol. 159, 1703–1710.
San Jose, E., Borroto, A., Niedergang, F., Alcover, A., and Alarcon, B. (2000) Triggering the TCR complex causes the downregulation of nonengaged receptors by a signal transduction-dependent mechanism. Immunity 12, 161–170.
Bonefeld, C. M., Rasmussen, A. B., Lauritsen, J. P., et al. (2003) TCR comodulation of nonengaged TCR takes place by a protein kinase C and CD3 gamma di-leucine-based motif-dependent mechanism. J. Immunol. 171, 3003–3009.
Punt, J. A., Roberts, J. L., Kearse, K. P., and Singer, A. (1994) Stoichiometry of the T cell antigen receptor (TCR) complex: each TCR/CD3 complex contains one TCR alpha, one TCR beta, and two CD3 epsilon chains. J. Exp. Med. 180, 587–593.
Call, M. E., Pyrdol, J., Wiedmann, M., and Wucherpfennig, K. W. (2002) The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111, 967–979.
Call, M. E., Pyrdol, J., and Wucherpfennig, K. W. (2004) Stoichiometry of the T-cell receptor-CD3 complex and key intermediates assembled in the endoplasmic reticulum. EMBO J. 23, 2348–2357.
Fernandez-Miguel, G., Alarcon, B., Iglesias, A., et al. (1999) Multivalent structure of an alphabetaT cell receptor. Proc. Natl. Acad. Sci. USA 96, 1547–1552.
Drevot, P., Langlet, C., Guo, X. J., et al. (2002) TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21, 1899–1908.
Dumont, C., Blanchard, N., Di Bartolo, V., et al. (2002) TCR/CD3 down-modulation and zeta degradation are regulated by ZAP-70. J. Immunol. 169, 1705–1712.
Blanchard, N., Lankar, D., Faure, F., et al. (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J. Immunol. 168, 3235–3241.
Kastrup, J., Lauritsen, J. P., Menne, C., Dietrich, J., and Geisler, C. (2000) The phosphatase domains of CD45 are required for ligand induced T-cell receptor downregulation. Scand. J. Immunol. 51, 491–496.
Penna, D., Muller, S., Martinon, F., Demotz, S., Iwashima, M., and Valitutti, S. (1999) Degradation of ZAP-70 following antigenic stimulation in human T lymphocytes: role of calpain proteolytic pathway. J. Immunol. 163, 50–56.
Leupin, O., Zaru, R., Laroche, T., Muller, S., and Valitutti, S. (2000) Exclusion of CD45 from the T-cell receptor signaling area in antigen-stimulated T lymphocytes. Curr. Biol. 10, 277–280.
Freiberg, B. A., Kupfer, H., Maslanik, W., et al. (2002) Staging and resetting T cell activation in SMACs. Nat. Immunol. 3, 911–917.
Abastado, J. P., Lone, Y. C., Casrouge, A., Boulot, G., and Kourilsky, P. (1995) Dimerization of soluble major histocompatibility complex-peptide complexes is sufficient for activation of T cell hybridoma and induction of unresponsiveness. J. Exp. Med. 182, 439–447.
Hamad, A. R., O'Herrin, S. M., Lebowitz, M. S., et al. (1998) Potent T cell activation with dimeric peptide-major histocompatibility complex class II ligand: the role of CD4 coreceptor. J. Exp. Med. 188, 1633–1640.
Boniface, J. J., Rabinowitz, J. D., Wulfing, C., et al. (1998) Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands [corrected]. Immunity 9, 459–466.
Cochran, J. R., Cameron, T. O., and Stern, L. J. (2000) The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12, 241–250.
Chan, C., George, A. J. T., and Stark, J. (2003) T cell sensitivity and specificity-kinetic proofreading revisited. Disc. Cont. Dyn. Sys. Ser. B 3, 343–360.
Grakoui, A., Bromley, S. K., Sumen, C., et al. (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227.
Chao, N. M., Young, S. H., and Poo, M. M. (1981) Localization of cell membrane components by surface diffusion into a “trap”. Biophys. J. 36, 139–153.
Wooldridge, L., van den Berg, H. A., Glick, M., et al. (2005) Interaction between the CD8 coreceptor and major historcompatibility complex class I stabilizes T cell receptorantigen complexes at the cell surface. J. Biol. Chem. 280, 27491–27501.
McKeithan, T. W. (1995) Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci. USA 92, 5042–5046.
Wulfing, C., Sumen, C., Sjaastad, M. D., Wu, L. C., Dustin, M. L., and Davis, M. M. (2002) Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat. Immunol. 3, 42–47.
Sousa, J., and Carneiro, J. (2000) A mathematical analysis of TCR serial triggering and down-regulation. Eur. J. Immunol. 30, 3219–3227.
Niedergang, F., Dautry-Varsat, A., and Alcover, A. (1998) Cooperative activation of TCRs by enterotoxin superantigens. J. Immunol. 161, 6054–6058.
Burroughs, N. J., and Wulfing, C. (2002) Differential segregation in a cell-cell contact interface: the dynamics of the immunological synapse. Biophys. J. 83, 1784–1796.
Schamel, W. W., Risueno, S. M., Minguet, S., et al. (2006) A conformation-and avidity-based proofreading mechanism for the TCR-CD3 complex. Trends Immunol 27, 176–182.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Utzny, C., Coombs, D., Müller, S. et al. Analysis of peptide/MHC-induced TCR downregulation. Cell Biochem Biophys 46, 101–111 (2006). https://doi.org/10.1385/CBB:46:2:101
Issue Date:
DOI: https://doi.org/10.1385/CBB:46:2:101

